Real-time dynamic performance enhancement for solar-powered pumping systems using PI-based MPPT techniques

IF 2.1 4区 工程技术 Q3 ENERGY & FUELS Journal of Solar Energy Engineering-transactions of The Asme Pub Date : 2023-03-02 DOI:10.1115/1.4057038
M. Ebrahim, Adham Osama, K. Fetyan
{"title":"Real-time dynamic performance enhancement for solar-powered pumping systems using PI-based MPPT techniques","authors":"M. Ebrahim, Adham Osama, K. Fetyan","doi":"10.1115/1.4057038","DOIUrl":null,"url":null,"abstract":"\n The integration of Solar-powered pumping systems (SPPS) into agriculture and wastewater sectors becomes mandatory to provide water in remote regions. The broad use of SPPS with classical maximum power point tracking controllers (MPPTCs) showed moderated voltage and power response deterioration. This paper presents a new simple, cost-effective real-time hardware-in-the-loop (RT-HIL) framework to enhance the dynamic performance of SPPS. To accomplish this study, a real pumping station was modeled and equipped with MPPTCs through MATLAB/SIMULINK. Besides, a practical SPPS was implemented to evaluate the effectiveness of the proposed RT-HIL on system performance. The tuned PI/FOPI-based MPPTCs are adopted in this work to gain the maximum power from the PV generator under measured real environmental conditions. The proposed real-time MPPTCs techniques are Perturb and Observe and Incremental Conductance with I, PI, and fractional-order PI (FOPI) controllers. The simulation and the experimental results prove the superiority of the developed real-time FOPI-based MPPTCs on enhancing the system performance in terms of the gained power, module output current, pump flow rate, and pump efficiency. Paper's novelty lies behind the relatively low-cost real-time execution of PI/FOPI based MPPT techniques on SPPS. This work was simulated using MATLAB/SIMULINK in conjunction with Arduino-based RT-HIL and the experimental validation was implemented at the National Water Research Center (NWRC) in Egypt.","PeriodicalId":17124,"journal":{"name":"Journal of Solar Energy Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solar Energy Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4057038","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

Abstract

The integration of Solar-powered pumping systems (SPPS) into agriculture and wastewater sectors becomes mandatory to provide water in remote regions. The broad use of SPPS with classical maximum power point tracking controllers (MPPTCs) showed moderated voltage and power response deterioration. This paper presents a new simple, cost-effective real-time hardware-in-the-loop (RT-HIL) framework to enhance the dynamic performance of SPPS. To accomplish this study, a real pumping station was modeled and equipped with MPPTCs through MATLAB/SIMULINK. Besides, a practical SPPS was implemented to evaluate the effectiveness of the proposed RT-HIL on system performance. The tuned PI/FOPI-based MPPTCs are adopted in this work to gain the maximum power from the PV generator under measured real environmental conditions. The proposed real-time MPPTCs techniques are Perturb and Observe and Incremental Conductance with I, PI, and fractional-order PI (FOPI) controllers. The simulation and the experimental results prove the superiority of the developed real-time FOPI-based MPPTCs on enhancing the system performance in terms of the gained power, module output current, pump flow rate, and pump efficiency. Paper's novelty lies behind the relatively low-cost real-time execution of PI/FOPI based MPPT techniques on SPPS. This work was simulated using MATLAB/SIMULINK in conjunction with Arduino-based RT-HIL and the experimental validation was implemented at the National Water Research Center (NWRC) in Egypt.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于PI的MPPT技术提高太阳能泵送系统的实时动态性能
太阳能抽水系统(SPPS)与农业和废水处理部门的整合成为偏远地区供水的强制性要求。SPPS与经典最大功率点跟踪控制器(MPPTC)的广泛使用显示出适度的电压和功率响应恶化。本文提出了一种新的简单、经济高效的实时硬件在环(RT-HIL)框架,以提高SPPS的动态性能。为了完成这项研究,通过MATLAB/SIMULINK对一个真实的泵站进行了建模,并配备了MPPTC。此外,还实现了一个实用的SPPS来评估所提出的RT-HIL对系统性能的有效性。本工作采用了基于调谐PI/FOPI的MPPTC,以在测量的真实环境条件下获得光伏发电机的最大功率。所提出的实时MPPTC技术是具有I、PI和分数阶PI(FOPI)控制器的扰动和观察以及增量电导。仿真和实验结果证明了所开发的基于实时FOPI的MPPTC在提高系统增益功率、模块输出电流、泵流量和泵效率方面的优越性。论文的新颖之处在于SPPS上基于PI/FOPI的MPPT技术的实时执行成本相对较低。这项工作使用MATLAB/SIMULINK和基于Arduino的RT-HIL进行了模拟,并在埃及国家水研究中心(NWRC)进行了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
26.10%
发文量
98
审稿时长
6.0 months
期刊介绍: The Journal of Solar Energy Engineering - Including Wind Energy and Building Energy Conservation - publishes research papers that contain original work of permanent interest in all areas of solar energy and energy conservation, as well as discussions of policy and regulatory issues that affect renewable energy technologies and their implementation. Papers that do not include original work, but nonetheless present quality analysis or incremental improvements to past work may be published as Technical Briefs. Review papers are accepted but should be discussed with the Editor prior to submission. The Journal also publishes a section called Solar Scenery that features photographs or graphical displays of significant new installations or research facilities.
期刊最新文献
Experimental Analysis of a Solar Air Heater Featuring Multiple Spiral-Shaped Semi-Conical Ribs Granular flow in novel Octet shape-based lattice frame material Design and Performance Evaluation of a Novel Solar Dryer for Drying Potatoes in the Eastern Algerian Sahara Thermal and Electrical Analysis of Organometallic Halide Solar Cells Condensation Heat Transfer Experiments of R410A and R32 in Horizontal Smooth and Enhanced Tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1