Geotechnical Challenges And Lessons Learnt From Bolivia Hill Upgrade Project

IF 0.3 Q4 ENGINEERING, GEOLOGICAL Australian Geomechanics Journal Pub Date : 2022-06-01 DOI:10.56295/agj5724
Qj Yang, J. Dane
{"title":"Geotechnical Challenges And Lessons Learnt From Bolivia Hill Upgrade Project","authors":"Qj Yang, J. Dane","doi":"10.56295/agj5724","DOIUrl":null,"url":null,"abstract":"This paper presents a case study of geotechnical design and construction challenges of bridge foundations and approaches in a hilly granite formation in northern New South Wales, Australia. Firstly, the geological formation and existing cut slope conditions which have high risks of rock fall is described. The detailed design was based on the available geotechnical information and assumed construction methodology. Reinforced concrete cantilever retaining walls founded on mass concrete were adopted for the bridge southern approach to resolve constructability issues over hilly terrain. Slope treatments using a rock fall fence together with individual boulder stabilisation or removal were also considered. It was found during construction that the actual ground conditions were different to that originally inferred and modifications to pad footing designs were deemed necessary. Additional investigations were undertaken, and the subsurface ground models updated to inform the revised design. For the northern bridge abutment foundation, a piled foundation was introduced to optimise the design with due consideration of temporary piling platform and access along a new geotextile reinforced approach embankment. The revised design was developed in close collaboration with the Contractor and the Principal. The foundation design of Pier 2 was revised using micro-piles to address the presence of a weak rock layer intrusion. In the end, key lessons learnt from this challenging project have been summarised for future project references.","PeriodicalId":43619,"journal":{"name":"Australian Geomechanics Journal","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Geomechanics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56295/agj5724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a case study of geotechnical design and construction challenges of bridge foundations and approaches in a hilly granite formation in northern New South Wales, Australia. Firstly, the geological formation and existing cut slope conditions which have high risks of rock fall is described. The detailed design was based on the available geotechnical information and assumed construction methodology. Reinforced concrete cantilever retaining walls founded on mass concrete were adopted for the bridge southern approach to resolve constructability issues over hilly terrain. Slope treatments using a rock fall fence together with individual boulder stabilisation or removal were also considered. It was found during construction that the actual ground conditions were different to that originally inferred and modifications to pad footing designs were deemed necessary. Additional investigations were undertaken, and the subsurface ground models updated to inform the revised design. For the northern bridge abutment foundation, a piled foundation was introduced to optimise the design with due consideration of temporary piling platform and access along a new geotextile reinforced approach embankment. The revised design was developed in close collaboration with the Contractor and the Principal. The foundation design of Pier 2 was revised using micro-piles to address the presence of a weak rock layer intrusion. In the end, key lessons learnt from this challenging project have been summarised for future project references.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
玻利维亚山地升级工程的岩土工程挑战和经验教训
本文介绍了澳大利亚新南威尔士州北部丘陵花岗岩地层中桥梁基础和方法的岩土工程设计和施工挑战的案例研究。首先,对岩崩危险性高的地质构造和现有堑坡条件进行了描述。详细设计是基于现有的岩土工程信息和假设的施工方法。为解决丘陵地形上的可施工性问题,大桥南侧采用了基于大体积混凝土的钢筋混凝土悬臂挡土墙。还考虑了使用岩崩围栏的边坡处理以及单个巨石的稳定或移除。在施工过程中发现,实际的地面情况与最初推断的不同,因此有必要对垫基设计进行修改。我们进行了进一步的调查,并更新了地下模型,以便为修改后的设计提供信息。北桥桥台基础采用桩基础优化设计,充分考虑临时打桩平台和新型土工布加固引路堤通道。修订后的设计是与承包商和业主密切合作制定的。采用微桩对2号墩的基础设计进行了修改,以解决软弱岩层侵入的问题。最后,总结了从这个具有挑战性的项目中吸取的主要经验教训,以供将来的项目参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Australian Geomechanics Journal
Australian Geomechanics Journal ENGINEERING, GEOLOGICAL-
CiteScore
0.40
自引率
0.00%
发文量
1
期刊最新文献
Can the shrink-swell index be predicted in the Wagga Wagga region based on Atterberg limits? The Queensland geotechnical database Simplified excavation-induced lateral displacement assessment in Sydney area Australian Geomechanics – State of the Journal Assessing the geometry of defect waviness from borehole data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1