{"title":"Two-dimensional heteroclinic connections in the generalized Lotka–Volterra system","authors":"O. Podvigina","doi":"10.1080/14689367.2022.2162371","DOIUrl":null,"url":null,"abstract":"We consider a three-dimensional generalized Lotka–Volterra (GLV) system assuming that it has equilibria on each of the coordinate axes, stable along the respective directions, and heteroclinic trajectories, and , that belong to coordinate planes. For such a system we give a complete classification of possible types of dynamics, characterized by the existence or non-existence of various two-dimensional heteroclinic connections. For each of these classes, we derive inequalities satisfied by coefficients of the system. The results can be used for the construction of GLV systems possessing various heteroclinic cycles or networks.","PeriodicalId":50564,"journal":{"name":"Dynamical Systems-An International Journal","volume":"38 1","pages":"163 - 178"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamical Systems-An International Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2022.2162371","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
We consider a three-dimensional generalized Lotka–Volterra (GLV) system assuming that it has equilibria on each of the coordinate axes, stable along the respective directions, and heteroclinic trajectories, and , that belong to coordinate planes. For such a system we give a complete classification of possible types of dynamics, characterized by the existence or non-existence of various two-dimensional heteroclinic connections. For each of these classes, we derive inequalities satisfied by coefficients of the system. The results can be used for the construction of GLV systems possessing various heteroclinic cycles or networks.
期刊介绍:
Dynamical Systems: An International Journal is a world-leading journal acting as a forum for communication across all branches of modern dynamical systems, and especially as a platform to facilitate interaction between theory and applications. This journal publishes high quality research articles in the theory and applications of dynamical systems, especially (but not exclusively) nonlinear systems. Advances in the following topics are addressed by the journal:
•Differential equations
•Bifurcation theory
•Hamiltonian and Lagrangian dynamics
•Hyperbolic dynamics
•Ergodic theory
•Topological and smooth dynamics
•Random dynamical systems
•Applications in technology, engineering and natural and life sciences