Evaluation of the Simultaneous Effects of Lactobacillus delbrueckii and Lactobacillus lactis on Biofilms of Isolates from Chronic Ulcer Infections with Multiple-drug Resistance

IF 0.5 4区 医学 Q4 MICROBIOLOGY Jundishapur Journal of Microbiology Pub Date : 2022-11-27 DOI:10.5812/jjm-127085
Kobra Tarajian, H. Fazeli, P. Beshkar, Vajihe Karbasizade
{"title":"Evaluation of the Simultaneous Effects of Lactobacillus delbrueckii and Lactobacillus lactis on Biofilms of Isolates from Chronic Ulcer Infections with Multiple-drug Resistance","authors":"Kobra Tarajian, H. Fazeli, P. Beshkar, Vajihe Karbasizade","doi":"10.5812/jjm-127085","DOIUrl":null,"url":null,"abstract":"Background: Bacterial biofilm is a major barrier to chronic wound healing. Therefore, the prevention of biofilm formation has an effective role in accelerating the healing of these wounds. Today, probiotics' anti-biofilm and antibacterial activity have been proven, and bacteriotherapy by probiotics is a new strategy for treating chronic ulcer infections. Objectives: The present study aimed to investigate the synergistic effects of Lactobacillus delbrueckii and L. lactis on biofilms of bacterial agents isolated from these ulcers in the human plasma biofilm model (hpBIOM). Methods: This study examined 82 specimens of chronic ulcer biofilms and identified bacterial isolates using phenotypic and molecular methods. After preparing the hpBIOM, 50 µL of each probiotic (109 CFU/mL) was added in two doses separately and simultaneously. After 24 hours, 1 mL of bromelain (0.1 g/mL) was added to the complex and incubated at 37°C for two hours. Then, the surviving bacterial cells were counted by serial dilutions. Results: Among 119 bacterial isolates, Staphylococcus aureus (19%), Escherichia coli (17.0%), and Pseudomonas aeruginosa (14%) were the most common bacterial isolates. Lactobacillus delbrueckii showed anti-biofilm activity against multiple-drug resistance pathogens, Staphylococcus, P. aeruginosa, and K. pneumoniae. Although L. lactis had anti-biofilm activity against these three pathogens, its effect was less than that of L. delbrueckii. The two probiotics did not have any synergistic effect on the biofilms of the isolates. Conclusions: The results of the present study emphasized the potential of probiotics in destroying biofilms of isolates with multiple-drug resistance; however, their simultaneous use for this purpose requires further investigation.","PeriodicalId":17803,"journal":{"name":"Jundishapur Journal of Microbiology","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jundishapur Journal of Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5812/jjm-127085","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Bacterial biofilm is a major barrier to chronic wound healing. Therefore, the prevention of biofilm formation has an effective role in accelerating the healing of these wounds. Today, probiotics' anti-biofilm and antibacterial activity have been proven, and bacteriotherapy by probiotics is a new strategy for treating chronic ulcer infections. Objectives: The present study aimed to investigate the synergistic effects of Lactobacillus delbrueckii and L. lactis on biofilms of bacterial agents isolated from these ulcers in the human plasma biofilm model (hpBIOM). Methods: This study examined 82 specimens of chronic ulcer biofilms and identified bacterial isolates using phenotypic and molecular methods. After preparing the hpBIOM, 50 µL of each probiotic (109 CFU/mL) was added in two doses separately and simultaneously. After 24 hours, 1 mL of bromelain (0.1 g/mL) was added to the complex and incubated at 37°C for two hours. Then, the surviving bacterial cells were counted by serial dilutions. Results: Among 119 bacterial isolates, Staphylococcus aureus (19%), Escherichia coli (17.0%), and Pseudomonas aeruginosa (14%) were the most common bacterial isolates. Lactobacillus delbrueckii showed anti-biofilm activity against multiple-drug resistance pathogens, Staphylococcus, P. aeruginosa, and K. pneumoniae. Although L. lactis had anti-biofilm activity against these three pathogens, its effect was less than that of L. delbrueckii. The two probiotics did not have any synergistic effect on the biofilms of the isolates. Conclusions: The results of the present study emphasized the potential of probiotics in destroying biofilms of isolates with multiple-drug resistance; however, their simultaneous use for this purpose requires further investigation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
德氏乳杆菌和乳杆菌对多重耐药性慢性溃疡感染分离株生物膜同时作用的评价
背景:细菌生物膜是慢性伤口愈合的主要屏障。因此,预防生物膜的形成对加速这些伤口的愈合具有有效作用。如今,益生菌的抗生物膜和抗菌活性已经得到证实,益生菌的细菌治疗是治疗慢性溃疡感染的一种新策略。目的:本研究旨在研究德氏乳杆菌和乳杆菌在人血浆生物膜模型(hpBIOM)中对从这些溃疡中分离的细菌制剂的生物膜的协同作用。方法:本研究检测了82份慢性溃疡生物膜标本,并用表型和分子方法鉴定了细菌分离株。在制备hpBIOM后,将50µL的每种益生菌(109 CFU/mL)分两次分别同时加入。24小时后,将1 mL菠萝蛋白酶(0.1 g/mL)加入复合物中,并在37°C下孵育2小时。然后,通过连续稀释对存活的细菌细胞进行计数。结果:119株分离菌中,金黄色葡萄球菌(19%)、大肠杆菌(17.0%)和铜绿假单胞菌(14%)是最常见的分离菌。德氏乳杆菌对多种耐药病原体葡萄球菌、铜绿假单胞菌和肺炎克雷伯菌表现出抗生物膜活性。尽管乳酸乳杆菌对这三种病原体具有抗生物膜活性,但其效果不如德氏乳杆菌。这两种益生菌对分离物的生物膜没有任何协同作用。结论:本研究结果强调了益生菌在破坏多重耐药菌株生物膜方面的潜力;然而,它们同时用于这一目的还需要进一步调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Jundishapur Journal of Microbiology, (JJM) is the official scientific Monthly publication of Ahvaz Jundishapur University of Medical Sciences. JJM is dedicated to the publication of manuscripts on topics concerning all aspects of microbiology. The topics include medical, veterinary and environmental microbiology, molecular investigations and infectious diseases. Aspects of immunology and epidemiology of infectious diseases are also considered.
期刊最新文献
Examining the Frequency of Carbapenem Resistance Genes and Its Relationship with Different Classes of Integrons Including Classes I and II in Pseudomonas aeruginosa Isolates of Burn Patients Vitamin D Deficiency and Receptor Polymorphisms as Risk Factors for COVID-19 Macrolide-resistant Mycoplasma pneumoniae in an Iranian Pediatric Sample with Community-Acquired Pneumonia Molecular Characterization and Phage Typing of Methicillin-resistant Staphylococcus aureus Isolated from Clinical Samples in Isfahan, Iran Molecular Characteristics and the Effect of Mutations in Different Sites of the rplD Gene Among Clinical Isolates of Azithromycin Resistance Neisseria gonorrhoeae in Eastern China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1