{"title":"Design Considerations for Vertical Bifacial Agrivoltaic Installations","authors":"","doi":"10.1115/1.4062323","DOIUrl":null,"url":null,"abstract":"\n The expected annual energy output of vertical bifacial solar panel arrays was modelled with an eye on how array design attributes affect the output. We considered module height, cell density (single- or double-high racking), inter-row spacing, and inverter connection (rows of modules wired together or separately), and the inclusion of bypass diodes. We observed that these design choices have a substantial impact on the annual energy yield on a per-module basis and per-acre basis. We modeled the instantaneous brightness and shading based on the position of the sun and adjacent rows of modules, which caused non-uniform irradiance due to inter-row shading effects. Based on the irradiance, we calculated current, voltage, and power values throughout a year for different design strategies. Double-high racking, which uses two landscape-oriented modules stacked vertically, offers noteworthy power gains per acre with only a modest increase of inter-row shading. When bypass diodes are included in the module design and improved inverter wiring is used, much of the loss due to inter-row shading is mitigated, and the total power output per acre is nearly doubled, with modules seeing an 80% power increase per acre for 20 ft row spacing, and over 90% power increase per acre for 40 ft spacing).","PeriodicalId":17124,"journal":{"name":"Journal of Solar Energy Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solar Energy Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062323","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
The expected annual energy output of vertical bifacial solar panel arrays was modelled with an eye on how array design attributes affect the output. We considered module height, cell density (single- or double-high racking), inter-row spacing, and inverter connection (rows of modules wired together or separately), and the inclusion of bypass diodes. We observed that these design choices have a substantial impact on the annual energy yield on a per-module basis and per-acre basis. We modeled the instantaneous brightness and shading based on the position of the sun and adjacent rows of modules, which caused non-uniform irradiance due to inter-row shading effects. Based on the irradiance, we calculated current, voltage, and power values throughout a year for different design strategies. Double-high racking, which uses two landscape-oriented modules stacked vertically, offers noteworthy power gains per acre with only a modest increase of inter-row shading. When bypass diodes are included in the module design and improved inverter wiring is used, much of the loss due to inter-row shading is mitigated, and the total power output per acre is nearly doubled, with modules seeing an 80% power increase per acre for 20 ft row spacing, and over 90% power increase per acre for 40 ft spacing).
期刊介绍:
The Journal of Solar Energy Engineering - Including Wind Energy and Building Energy Conservation - publishes research papers that contain original work of permanent interest in all areas of solar energy and energy conservation, as well as discussions of policy and regulatory issues that affect renewable energy technologies and their implementation. Papers that do not include original work, but nonetheless present quality analysis or incremental improvements to past work may be published as Technical Briefs. Review papers are accepted but should be discussed with the Editor prior to submission. The Journal also publishes a section called Solar Scenery that features photographs or graphical displays of significant new installations or research facilities.