New insights into the crystal chemistry of zemannite: Trigonal rather than hexagonal symmetry due to ordering within the host-guest structure

IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Mineralogy and Petrology Pub Date : 2023-05-08 DOI:10.1007/s00710-023-00820-7
Herta S. Effenberger, Martin Ende, Ronald Miletich
{"title":"New insights into the crystal chemistry of zemannite: Trigonal rather than hexagonal symmetry due to ordering within the host-guest structure","authors":"Herta S. Effenberger,&nbsp;Martin Ende,&nbsp;Ronald Miletich","doi":"10.1007/s00710-023-00820-7","DOIUrl":null,"url":null,"abstract":"<div><p>The microporous crystal structure of zemannite, Mg(H<sub>2</sub>O)<sub>6</sub>[Zn<sup>2+</sup>Fe<sup>3+</sup>(TeO<sub>3</sub>)<sub>3</sub>]<sub>2</sub>·<i>n</i>H<sub>2</sub>O, <i>n</i> ≤ 3, was re-investigated based on single-crystal X-ray diffraction data measured at 298 ± 0.5 K, 200 ± 1 K and 100 ± 3 K. So far, zemannite was described in space group <i>P</i>6<sub>3</sub> exhibiting a pronounced <i>pseudo</i>symmetry (<i>P</i>6<sub>3</sub>/<i>m</i>). All refinements confirm the [Zn<sup>2+</sup>Fe<sup>3+</sup>(TeO<sub>3</sub>)<sub>3</sub>]<sup>1−</sup> framework topology with the extra-framework constituents (Mg atoms and H<sub>2</sub>O molecules) being located within the channels along [001]. Measurements on a sample from the type locality revealed the unexpected occurrence of 00<i>l</i> reflections with <i>l</i> = 2<i>n</i> + 1, which clearly violate the 6<sub>3</sub> screw-axis symmetry. The minor but significant intensities of the low-order 00<i>l</i> reflections are assigned to the small differences in the scattering power between the Fe and Zn atoms; thus, the Zn and Fe cations are partly ordered between crystallographically distinct sites within the framework. In addition, the low symmetry allows a full order of the extra-framework atoms for the first time. A series of comparative refinement models were performed in the space groups <i>P</i>6<sub>3</sub>/<i>m</i>, <i>P</i>6<sub>3</sub>, <i>P</i><span>\\(\\overline{6}\\)</span>, and <i>P</i>3. A fully ordered arrangement of the extra-framework guest atoms confirms the earlier postulated theoretical structure model with a hexahydrated Mg<sup>2+</sup> ion besides additional interstitial H<sub>2</sub>O molecules. The final refinements in space group <i>P</i>3 yield R1 ≤ 0.025 for the entire data sets measured at the distinct temperatures (2θ<sub>max</sub> = 101.4°, MoKα radiation). The polarity of the arrangement in the channels is restricted to individual domains of equal twin fractions related by a mirror plane parallel to (0001).\n</p></div>","PeriodicalId":18547,"journal":{"name":"Mineralogy and Petrology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00710-023-00820-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 2

Abstract

The microporous crystal structure of zemannite, Mg(H2O)6[Zn2+Fe3+(TeO3)3]2·nH2O, n ≤ 3, was re-investigated based on single-crystal X-ray diffraction data measured at 298 ± 0.5 K, 200 ± 1 K and 100 ± 3 K. So far, zemannite was described in space group P63 exhibiting a pronounced pseudosymmetry (P63/m). All refinements confirm the [Zn2+Fe3+(TeO3)3]1− framework topology with the extra-framework constituents (Mg atoms and H2O molecules) being located within the channels along [001]. Measurements on a sample from the type locality revealed the unexpected occurrence of 00l reflections with l = 2n + 1, which clearly violate the 63 screw-axis symmetry. The minor but significant intensities of the low-order 00l reflections are assigned to the small differences in the scattering power between the Fe and Zn atoms; thus, the Zn and Fe cations are partly ordered between crystallographically distinct sites within the framework. In addition, the low symmetry allows a full order of the extra-framework atoms for the first time. A series of comparative refinement models were performed in the space groups P63/m, P63, P\(\overline{6}\), and P3. A fully ordered arrangement of the extra-framework guest atoms confirms the earlier postulated theoretical structure model with a hexahydrated Mg2+ ion besides additional interstitial H2O molecules. The final refinements in space group P3 yield R1 ≤ 0.025 for the entire data sets measured at the distinct temperatures (2θmax = 101.4°, MoKα radiation). The polarity of the arrangement in the channels is restricted to individual domains of equal twin fractions related by a mirror plane parallel to (0001).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对菱铁矿晶体化学的新见解:由于主客体结构内的排序,三角形而不是六边形对称
利用在298±0.5 K、200±1 K和100±3 K下测得的单晶x射线衍射数据,重新研究了锰石Mg(H2O)6[Zn2+Fe3+(TeO3)3]2·nH2O (n≤3)的微孔晶体结构。到目前为止,在空间群P63中描述的斜锰矿表现出明显的伪对称性(P63/m)。所有的改进都证实了[Zn2+Fe3+(TeO3)3]1−框架拓扑结构,框架外成分(Mg原子和H2O分子)位于沿[001]的通道内。对一个类型局域样品的测量发现,l = 2n + 1的00l反射出乎意料地出现,这明显违反了63螺旋轴对称。低阶00l反射的微弱但显著的强度归因于Fe和Zn原子之间散射功率的微小差异;因此,锌和铁阳离子在框架内晶体学上不同的位置之间部分有序。此外,低对称性首次允许了框架外原子的完整顺序。在P63/m、P63、P \(\overline{6}\)和P3空间组中进行了一系列比较细化模型。框架外客体原子的完全有序排列证实了先前假设的理论结构模型,其中除了额外的间隙水分子外还有六水合Mg2+离子。在不同温度(2θmax = 101.4°,MoKα辐射)下测量的整个数据集,空间组P3的最终精细化结果为R1≤0.025。通道中排列的极性被限制为由平行于(0001)的镜像面相关的相等双组分的单个域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mineralogy and Petrology
Mineralogy and Petrology 地学-地球化学与地球物理
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: Mineralogy and Petrology welcomes manuscripts from the classical fields of mineralogy, igneous and metamorphic petrology, geochemistry, crystallography, as well as their applications in academic experimentation and research, materials science and engineering, for technology, industry, environment, or society. The journal strongly promotes cross-fertilization among Earth-scientific and applied materials-oriented disciplines. Purely descriptive manuscripts on regional topics will not be considered. Mineralogy and Petrology was founded in 1872 by Gustav Tschermak as "Mineralogische und Petrographische Mittheilungen". It is one of Europe''s oldest geoscience journals. Former editors include outstanding names such as Gustav Tschermak, Friedrich Becke, Felix Machatschki, Josef Zemann, and Eugen F. Stumpfl.
期刊最新文献
Unveiling CCS Potential of the Rio Bonito Formation, Paraná Basin, southern Brazil: The Dawsonite Discovery Karlleuite Ca2MnO4 – a first mineral with the Ruddlesden-Popper type structure from Bellerberg volcano, Germany On thorite in Nubian granodiorite (Southwestern Egypt) Petrogenesis of microgranular enclaves in the A-type granitoid Krasnopol intrusion (Mazury Complex, northeastern Poland): Evidence of magma mixing Electron paramagnetic resonance signature of rock-forming blue quartz from the Albești (Romania) granite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1