Improvement of Optical Performances Using the Hybrid CPV

Q2 Energy Journal of Daylighting Pub Date : 2020-11-19 DOI:10.15627/jd.2020.20
S. E. Himer, A. Ahaitouf
{"title":"Improvement of Optical Performances Using the Hybrid CPV","authors":"S. E. Himer, A. Ahaitouf","doi":"10.15627/jd.2020.20","DOIUrl":null,"url":null,"abstract":"Hybrid Concentrated Photovoltaics (HCPVs) are systems in which additional low-cost silicone solar cells are added to take advantage of the power generated by the diffuse radiation lost when using only multi-junction cells that work only with direct radiation. The work has been tested by simulating the performance of a hybrid CPV system composed of a Fresnel lens associated with a pyramid, multi junction cell as well as additional silicon solar cells. This proposal is compared with an ordinary CPV system and a system based on only silicon solar cells. The simulation results show that the CPV makes it possible to have a high optical efficiency of 94% at the pyramid exit for direct radiation, but this high efficiency rapidly decreases to 0% for diffuse radiation. In this case, the silicon solar cell comes into the scene to converts these diffused or non-concentrated rays into electricity, with an optical efficiency of 85%. It was also found that the Hybrid CPV system was able to increase the power by 21% compared to the CPV system. © 2020 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).","PeriodicalId":37388,"journal":{"name":"Journal of Daylighting","volume":"7 1","pages":"238-245"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Daylighting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15627/jd.2020.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 2

Abstract

Hybrid Concentrated Photovoltaics (HCPVs) are systems in which additional low-cost silicone solar cells are added to take advantage of the power generated by the diffuse radiation lost when using only multi-junction cells that work only with direct radiation. The work has been tested by simulating the performance of a hybrid CPV system composed of a Fresnel lens associated with a pyramid, multi junction cell as well as additional silicon solar cells. This proposal is compared with an ordinary CPV system and a system based on only silicon solar cells. The simulation results show that the CPV makes it possible to have a high optical efficiency of 94% at the pyramid exit for direct radiation, but this high efficiency rapidly decreases to 0% for diffuse radiation. In this case, the silicon solar cell comes into the scene to converts these diffused or non-concentrated rays into electricity, with an optical efficiency of 85%. It was also found that the Hybrid CPV system was able to increase the power by 21% compared to the CPV system. © 2020 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用混合CPV改进光学性能
混合聚光光伏(HCPVs)是一种系统,在该系统中增加了额外的低成本有机硅太阳能电池,以利用仅使用多结电池时所损失的漫射辐射产生的能量。这项工作已经通过模拟混合CPV系统的性能进行了测试,该系统由菲涅耳透镜与金字塔相关联,多结电池以及额外的硅太阳能电池组成。将该方案与普通CPV系统和仅基于硅太阳能电池的系统进行了比较。模拟结果表明,CPV使得金字塔出口在直接辐射时具有高达94%的光学效率,但在漫射辐射时该效率迅速下降到0%。在这种情况下,硅太阳能电池将这些扩散或非集中的光线转化为电能,其光学效率为85%。研究还发现,与CPV系统相比,混合CPV系统能够增加21%的功率。©2020作者。由solarlits.com出版。这是一篇基于CC BY许可(https://creativecommons.org/licenses/by/4.0/)的开放获取文章。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Daylighting
Journal of Daylighting Energy-Renewable Energy, Sustainability and the Environment
CiteScore
4.00
自引率
0.00%
发文量
18
审稿时长
10 weeks
期刊介绍: Journal of Daylighting is an international journal devoted to investigations of daylighting in buildings. It is the leading journal that publishes original research on all aspects of solar energy and lighting. Areas of special interest for this journal include, but are not limited to, the following: -Daylighting systems -Lighting simulation -Lighting designs -Luminaires -Lighting metrology and light quality -Lighting control -Building physics - lighting -Building energy modeling -Energy efficient buildings -Zero-energy buildings -Indoor environment quality -Sustainable solar energy systems -Application of solar energy sources in buildings -Photovoltaics systems -Building-integrated photovoltaics -Concentrator technology -Concentrator photovoltaic -Solar thermal
期刊最新文献
Synergistic Strategies: Comparing Energy Performance in Climate-Adaptive Building Envelopes for Iran's Cold Semi-Arid Climate Exploring Methodological Considerations: A Literature Review on How Lighting Affects the Sleep and Cognition in Healthy Older Adults Enhancing Visual Comfort and Energy Efficiency in Office Lighting Using Parametric-Generative Design Approach for Interactive Kinetic Louvers Electrochromic Glazing and Evaluation of Visual and Non-Visual Effects of Daylight: Simulation Studies for Brasilia – Brazil Analysing the Daylighting Performance of the Main Prayer-hall in the Great Mosque of Hama, Syria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1