Efficient Cybersecurity Model Using Wavelet Deep CNN and Enhanced Rain Optimization Algorithm

IF 0.8 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING International Journal of Image and Graphics Pub Date : 2023-03-31 DOI:10.1142/s0219467824500487
V. Lavanya, P. C. Sekhar
{"title":"Efficient Cybersecurity Model Using Wavelet Deep CNN and Enhanced Rain Optimization Algorithm","authors":"V. Lavanya, P. C. Sekhar","doi":"10.1142/s0219467824500487","DOIUrl":null,"url":null,"abstract":"Cybersecurity has received greater attention in modern times due to the emergence of IoT (Internet-of-Things) and CNs (Computer Networks). Because of the massive increase in Internet access, various malicious malware have emerged and pose significant computer security threats. The numerous computing processes across the network have a high risk of being tampered with or exploited, which necessitates developing effective intrusion detection systems. Therefore, it is essential to build an effective cybersecurity model to detect the different anomalies or cyber-attacks in the network. This work introduces a new method known as Wavelet Deep Convolutional Neural Network (WDCNN) to classify cyber-attacks. The presented network combines WDCNN with Enhanced Rain Optimization Algorithm (EROA) to minimize the loss in the network. This proposed algorithm is designed to detect attacks in large-scale data and reduces the complexities of detection with maximum detection accuracy. The proposed method is implemented in PYTHON. The classification process is completed with the help of the two most famous datasets, KDD cup 1999 and CICMalDroid 2020. The performance of WDCNN_EROA can be assessed using parameters like specificity, accuracy, precision F-measure and recall. The results showed that the proposed method is about 98.72% accurate for the first dataset and 98.64% for the second dataset.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467824500487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Cybersecurity has received greater attention in modern times due to the emergence of IoT (Internet-of-Things) and CNs (Computer Networks). Because of the massive increase in Internet access, various malicious malware have emerged and pose significant computer security threats. The numerous computing processes across the network have a high risk of being tampered with or exploited, which necessitates developing effective intrusion detection systems. Therefore, it is essential to build an effective cybersecurity model to detect the different anomalies or cyber-attacks in the network. This work introduces a new method known as Wavelet Deep Convolutional Neural Network (WDCNN) to classify cyber-attacks. The presented network combines WDCNN with Enhanced Rain Optimization Algorithm (EROA) to minimize the loss in the network. This proposed algorithm is designed to detect attacks in large-scale data and reduces the complexities of detection with maximum detection accuracy. The proposed method is implemented in PYTHON. The classification process is completed with the help of the two most famous datasets, KDD cup 1999 and CICMalDroid 2020. The performance of WDCNN_EROA can be assessed using parameters like specificity, accuracy, precision F-measure and recall. The results showed that the proposed method is about 98.72% accurate for the first dataset and 98.64% for the second dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波深度CNN和增强型Rain优化算法的高效网络安全模型
由于物联网和计算机网络的出现,网络安全在现代受到了更多的关注。由于互联网访问的大量增加,各种恶意恶意软件已经出现,并对计算机安全构成重大威胁。跨网络的众多计算过程具有被篡改或利用的高风险,这就需要开发有效的入侵检测系统。因此,建立一个有效的网络安全模型来检测网络中的不同异常或网络攻击是至关重要的。本文介绍了一种新的方法,即小波深度卷积神经网络(WDCNN)来对网络攻击进行分类。该网络将WDCNN与增强降雨优化算法(EROA)相结合,以最大限度地减少网络中的损失。该算法设计用于检测大规模数据中的攻击,并以最大的检测精度降低了检测的复杂性。所提出的方法已在PYTHON中实现。分类过程是在两个最著名的数据集KDD cup 1999和CICMalDroid 2020的帮助下完成的。WDCNN_EROA的性能可以使用特异性、准确性、精密度F测量和召回等参数进行评估。结果表明,该方法对第一个数据集和第二个数据集的准确率分别为98.72%和98.64%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Image and Graphics
International Journal of Image and Graphics COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
18.80%
发文量
67
期刊最新文献
Design and Implementation of Novel Hybrid and Multiscale- Assisted CNN and ResNet Using Heuristic Advancement of Adaptive Deep Segmentation for Iris Recognition Dwarf Mongoose Optimization with Transfer Learning-Based Fish Behavior Classification Model MRCNet: Multi-Level Residual Connectivity Network for Image Classification Feature Matching-Based Undersea Panoramic Image Stitching in VR Animation Multi-disease Classification of Mango Tree Using Meta-heuristic-based Weighted Feature Selection and LSTM Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1