Xiaofeng Zuo , Chunlai Zhang , Xiaoyu Zhang , Rende Wang , Jiaqi Zhao , Wenping Li
{"title":"Wind tunnel simulation of wind erosion and dust emission processes, and the influences of soil texture","authors":"Xiaofeng Zuo , Chunlai Zhang , Xiaoyu Zhang , Rende Wang , Jiaqi Zhao , Wenping Li","doi":"10.1016/j.iswcr.2023.08.005","DOIUrl":null,"url":null,"abstract":"<div><p>Dust emission caused by wind erosion of soil is an important surface process in arid and semi-arid regions. However, existing dust emission models pay insufficient attention to the impacts of aerodynamic entrainment of particles. In addition, studies of wind erosion processes do not adequately account for the dynamics of wind erosion rates and dust emission fluxes, or for the impact of soil texture on dust emission. Our wind tunnel simulations of wind erosion and dust emission showed that the soil texture, wind erosion duration, and shear velocity are major factors that affect the dynamics of wind erosion and dust emission. Because of the limited supply of surface sand and the change in surface erosion resistance caused by surface coarsening during erosion, the wind erosion rate and the flux of particles smaller than 10 μm (PM<sub>10</sub>) caused by aerodynamic entrainment decreased rapidly with increasing erosion duration, which suggests that surface wind erosion and dust emission occur primarily during the initial stage of wind erosion. The PM<sub>10</sub> emission efficiency decreased with increasing shear velocity following a power function, and finer textured sandy loam soils had greater PM<sub>10</sub> emission efficiency than loamy sand soils.</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"12 2","pages":"Pages 455-466"},"PeriodicalIF":7.3000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095633923000679/pdfft?md5=d5f00da1e0371de7f4ffe64f9a08c84d&pid=1-s2.0-S2095633923000679-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633923000679","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Dust emission caused by wind erosion of soil is an important surface process in arid and semi-arid regions. However, existing dust emission models pay insufficient attention to the impacts of aerodynamic entrainment of particles. In addition, studies of wind erosion processes do not adequately account for the dynamics of wind erosion rates and dust emission fluxes, or for the impact of soil texture on dust emission. Our wind tunnel simulations of wind erosion and dust emission showed that the soil texture, wind erosion duration, and shear velocity are major factors that affect the dynamics of wind erosion and dust emission. Because of the limited supply of surface sand and the change in surface erosion resistance caused by surface coarsening during erosion, the wind erosion rate and the flux of particles smaller than 10 μm (PM10) caused by aerodynamic entrainment decreased rapidly with increasing erosion duration, which suggests that surface wind erosion and dust emission occur primarily during the initial stage of wind erosion. The PM10 emission efficiency decreased with increasing shear velocity following a power function, and finer textured sandy loam soils had greater PM10 emission efficiency than loamy sand soils.
期刊介绍:
The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation.
The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards.
Examples of appropriate topical areas include (but are not limited to):
• Conservation models, tools, and technologies
• Conservation agricultural
• Soil health resources, indicators, assessment, and management
• Land degradation
• Sustainable development
• Soil erosion and its control
• Soil erosion processes
• Water resources assessment and management
• Watershed management
• Soil erosion models
• Literature review on topics related soil and water conservation research