{"title":"Carboxymethyl Tamarind Kernel Gum /ZnO- Biocomposite: As an Antifungal and Hazardous Metal Removal Agent","authors":"Jagram Meena, H. Chandra, S. Warkar","doi":"10.14447/jnmes.v25i3.a08","DOIUrl":null,"url":null,"abstract":"ZnO nanoparticles (ZnO NPs) were in situ mixed with carboxymethyl tamarind kernel gum to generate the new biocomposite. High-resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FTIR), x-ray diffraction analysis (XRD), and dynamic light scattering (DLS)were used to characterize the CMTKG/ZnO nanocomposites. Numerous characterizations were utilized to prove that ZnO NPs had been integrated into the biopolymer matrix. The standard size of the CMTKG/ZnO nanocomposites was developed to be greater than 32–40 nm using high-resolution transmission electron microscopy and x-ray analysis de-Scherer methods. Chromium (VI) was removed from the aqueous solution using the nanocomposite (CMTKG/ZnO) as an adsorbent. The nanocomposite reached its maximum adsorption during 80 minutes of contact time, 30 mg/L chromium (VI) concentration, 2.0 g/L adsorbent part, and 7.0 pH. Further research into the antifungal activity of CMTKG/ZnO nanocomposites against Aspergillus flavus MTCC-2799 was conducted.","PeriodicalId":16447,"journal":{"name":"Journal of New Materials For Electrochemical Systems","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of New Materials For Electrochemical Systems","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.14447/jnmes.v25i3.a08","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 1
Abstract
ZnO nanoparticles (ZnO NPs) were in situ mixed with carboxymethyl tamarind kernel gum to generate the new biocomposite. High-resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FTIR), x-ray diffraction analysis (XRD), and dynamic light scattering (DLS)were used to characterize the CMTKG/ZnO nanocomposites. Numerous characterizations were utilized to prove that ZnO NPs had been integrated into the biopolymer matrix. The standard size of the CMTKG/ZnO nanocomposites was developed to be greater than 32–40 nm using high-resolution transmission electron microscopy and x-ray analysis de-Scherer methods. Chromium (VI) was removed from the aqueous solution using the nanocomposite (CMTKG/ZnO) as an adsorbent. The nanocomposite reached its maximum adsorption during 80 minutes of contact time, 30 mg/L chromium (VI) concentration, 2.0 g/L adsorbent part, and 7.0 pH. Further research into the antifungal activity of CMTKG/ZnO nanocomposites against Aspergillus flavus MTCC-2799 was conducted.
期刊介绍:
This international Journal is intended for the publication of original work, both analytical and experimental, and of reviews and commercial aspects related to the field of New Materials for Electrochemical Systems. The emphasis will be on research both of a fundamental and an applied nature in various aspects of the development of new materials in electrochemical systems.