Modeling and propagating inventory‐based sampling uncertainty in the large‐scale forest demographic model “MARGOT”

IF 1.8 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Natural Resource Modeling Pub Date : 2022-08-08 DOI:10.1111/nrm.12352
Timothée Audinot, H. Wernsdörfer, G. Le Moguédec, J. Bontemps
{"title":"Modeling and propagating inventory‐based sampling uncertainty in the large‐scale forest demographic model “MARGOT”","authors":"Timothée Audinot, H. Wernsdörfer, G. Le Moguédec, J. Bontemps","doi":"10.1111/nrm.12352","DOIUrl":null,"url":null,"abstract":"Models based on national forest inventory (NFI) data intend to project forests under management and policy scenarios. This study aimed at quantifying the influence of NFI sampling uncertainty on parameters and simulations of the demographic model MARGOT. Parameter variance–covariance structure was estimated from bootstrap sampling of NFI field plots. Parameter variances and distributions were further modeled to serve as a plug‐in option to any inventory‐based initial condition. Forty‐year time series of observed forest growing stock were compared with model simulations to balance model uncertainty and bias. Variance models showed high accuracies. The Gamma distribution best fitted the distributions of transition, mortality and felling rates, while the Gaussian distribution best fitted tree recruitment fluxes. Simulation uncertainty amounted to 12% of the model bias at the country scale. Parameter covariance structure increased simulation uncertainty by 5.5% in this 12%. This uncertainty appraisal allows targeting model bias as a modeling priority.","PeriodicalId":49778,"journal":{"name":"Natural Resource Modeling","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resource Modeling","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/nrm.12352","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Models based on national forest inventory (NFI) data intend to project forests under management and policy scenarios. This study aimed at quantifying the influence of NFI sampling uncertainty on parameters and simulations of the demographic model MARGOT. Parameter variance–covariance structure was estimated from bootstrap sampling of NFI field plots. Parameter variances and distributions were further modeled to serve as a plug‐in option to any inventory‐based initial condition. Forty‐year time series of observed forest growing stock were compared with model simulations to balance model uncertainty and bias. Variance models showed high accuracies. The Gamma distribution best fitted the distributions of transition, mortality and felling rates, while the Gaussian distribution best fitted tree recruitment fluxes. Simulation uncertainty amounted to 12% of the model bias at the country scale. Parameter covariance structure increased simulation uncertainty by 5.5% in this 12%. This uncertainty appraisal allows targeting model bias as a modeling priority.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模森林人口统计模型“MARGOT”中基于库存的抽样不确定性建模和传播
基于国家森林清单数据的模型旨在预测管理和政策情景下的森林。本研究旨在量化NFI采样不确定性对人口统计模型MARGOT的参数和模拟的影响。参数方差-协方差结构是根据NFI场图的bootstrap抽样估计的。参数方差和分布被进一步建模,作为任何基于库存的初始条件的插入选项。将观测到的森林生长种群的40年时间序列与模型模拟进行比较,以平衡模型的不确定性和偏差。方差模型显示出较高的准确性。伽玛分布最适合过渡期、死亡率和砍伐率的分布,而高斯分布最适合树木招聘通量。模拟的不确定性相当于国家范围内模型偏差的12%。在这12%的时间里,参数协方差结构使模拟不确定性增加了5.5%。这种不确定性评估允许将模型偏差作为建模的优先事项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Natural Resource Modeling
Natural Resource Modeling 环境科学-环境科学
CiteScore
3.50
自引率
6.20%
发文量
28
审稿时长
>36 weeks
期刊介绍: Natural Resource Modeling is an international journal devoted to mathematical modeling of natural resource systems. It reflects the conceptual and methodological core that is common to model building throughout disciplines including such fields as forestry, fisheries, economics and ecology. This core draws upon the analytical and methodological apparatus of mathematics, statistics, and scientific computing.
期刊最新文献
Predicting soil hydraulic conductivity using random forest, SVM, and LSSVM models The role of environmental tax in guiding global climate policies to mitigate climate changes in European region Predicting gully formation: An approach for assessing susceptibility and future risk Research on the impact of leadership on improving urban water efficiency and water conservation policies Assessing the load capacity curve hypothesis considering the green energy transition, banking sector expansion, and import price of crude oil in the United States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1