Automated Interictal Epileptiform Discharge Detection From Scalp EEG Using Scalable Time-series Classification Approaches

IF 6.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Neural Systems Pub Date : 2022-07-10 DOI:10.1101/2022.07.06.22277287
D. Nhu, M. Janmohamed, L. Shakhatreh, O. Gonen, P. Perucca, A. Gilligan, P. Kwan, T. O'Brien, C. Tan, L. Kuhlmann
{"title":"Automated Interictal Epileptiform Discharge Detection From Scalp EEG Using Scalable Time-series Classification Approaches","authors":"D. Nhu, M. Janmohamed, L. Shakhatreh, O. Gonen, P. Perucca, A. Gilligan, P. Kwan, T. O'Brien, C. Tan, L. Kuhlmann","doi":"10.1101/2022.07.06.22277287","DOIUrl":null,"url":null,"abstract":"Deep learning for automated interictal epileptiform discharge (IED) detection has been topical with many published papers in recent years. All existing work viewed EEG signals as time-series and developed specific models for IED classification; however, general time-series classification (TSC) methods were not considered. Moreover, none of these methods were evaluated on any public datasets, making direct comparisons challenging. This paper explored two state-of-the-art convolutional-based TSC algorithms, InceptionTime and Minirocket, on IED detection. We fine-tuned and cross-evaluated them on two private and public (Temple University Events - TUEV) datasets and provided ready metrics for benchmarking future work. We observed that the optimal parameters correlated with the clinical duration of an IED and achieved the best AUC, AUPRC and F1 scores of 0.98, 0.80 and 0.77 on the private datasets, respectively. The AUC, AUPRC and F1 on TUEV were 0.99, 0.99 and 0.97, respectively. While algorithms trained on the private sets maintained the performance when tested on the TUEV data, those trained on TUEV could not generalise well to the private data. These results emerge from differences in the class distributions across datasets and indicate a need for public datasets with a better diversity of IED waveforms, background activities and artifacts to facilitate standardisation and benchmarking of algorithms.","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"1 1","pages":"2350001"},"PeriodicalIF":6.6000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1101/2022.07.06.22277287","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

Abstract

Deep learning for automated interictal epileptiform discharge (IED) detection has been topical with many published papers in recent years. All existing work viewed EEG signals as time-series and developed specific models for IED classification; however, general time-series classification (TSC) methods were not considered. Moreover, none of these methods were evaluated on any public datasets, making direct comparisons challenging. This paper explored two state-of-the-art convolutional-based TSC algorithms, InceptionTime and Minirocket, on IED detection. We fine-tuned and cross-evaluated them on two private and public (Temple University Events - TUEV) datasets and provided ready metrics for benchmarking future work. We observed that the optimal parameters correlated with the clinical duration of an IED and achieved the best AUC, AUPRC and F1 scores of 0.98, 0.80 and 0.77 on the private datasets, respectively. The AUC, AUPRC and F1 on TUEV were 0.99, 0.99 and 0.97, respectively. While algorithms trained on the private sets maintained the performance when tested on the TUEV data, those trained on TUEV could not generalise well to the private data. These results emerge from differences in the class distributions across datasets and indicate a need for public datasets with a better diversity of IED waveforms, background activities and artifacts to facilitate standardisation and benchmarking of algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可扩展时间序列分类方法的头皮脑电图间期癫痫样放电自动检测
近年来,深度学习用于癫痫样放电(IED)自动检测一直是许多已发表论文的热门话题。所有现有的工作都将EEG信号视为时间序列,并开发了IED分类的特定模型;然而,没有考虑一般的时间序列分类(TSC)方法。此外,这些方法都没有在任何公共数据集上进行评估,这使得直接比较具有挑战性。本文探讨了两种最先进的基于卷积的TSC算法,InceptionTime和Minirocket,用于IED检测。我们在两个私人和公共(坦普尔大学活动-TUEV)数据集上对它们进行了微调和交叉评估,并为未来的工作基准提供了现成的指标。我们观察到,最佳参数与IED的临床持续时间相关,并在私人数据集上获得了最佳AUC、AUPRC和F1得分,分别为0.98、0.80和0.77。TUEV的AUC、AUPRC和F1分别为0.99、0.99和0.97。虽然在私有集上训练的算法在TUEV数据上测试时保持了性能,但在TUEV上训练的那些算法不能很好地推广到私有数据。这些结果源于数据集之间类别分布的差异,表明需要具有更好多样性的IED波形、背景活动和工件的公共数据集,以促进算法的标准化和基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Neural Systems
International Journal of Neural Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
28.80%
发文量
116
审稿时长
24 months
期刊介绍: The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.
期刊最新文献
Epileptic Seizure Detection with an End-to-end Temporal Convolutional Network and Bidirectional Long Short-Term Memory Model A graph-based neural approach to linear sum assignment problems Automated Quality Evaluation of Large-Scale Benchmark Datasets for Vision-Language Tasks sEMG-based Inter-Session Hand Gesture Recognition via Domain Adaptation with Locality Preserving and Maximum Margin Cultural Differences in the Assessment of Synthetic Voices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1