{"title":"Experimental investigation on volumetric heat transfer coefficient during intermittent spray drying of mannitol solution","authors":"Rajasekar Krishnamoorthy, Raja Balakrishnan","doi":"10.1080/07373937.2023.2213317","DOIUrl":null,"url":null,"abstract":"Abstract The paper presents a detailed experimental investigation on volumetric heat transfer during intermittent spray drying of a 20% w/w of mannitol solution in a custom-made spray dryer. Unlike the conventional intermittent drying process, which achieves intermittency by pulsating the properties of the carrier gas medium, the present works achieve intermittency by pulsating the nozzle spray. The estimated volumetric heat transfer coefficient varies between 0.8 and 2 kW/m3K, and the volumetric mass transfer coefficient is between 0.6 and 2.5 s−1. The correlation for heat and mass transfer coefficients is evolved that relates the heat and mass transfer coefficient with the flow properties and thermophysical properties of both the carrier gas and the precursor fluid in terms of Ohnesorge number and Nusselt number. The investigation uses response surface analysis to analyze the effect of Reynolds number of air and Ohnesorge number of precursors on the volumetric heat transfer coefficient. The results show that a decrease in Reynolds number for a wide range and Ohnesorge number causes the volumetric heat transfer coefficient to increase.","PeriodicalId":11374,"journal":{"name":"Drying Technology","volume":"41 1","pages":"2012 - 2026"},"PeriodicalIF":2.7000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drying Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07373937.2023.2213317","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The paper presents a detailed experimental investigation on volumetric heat transfer during intermittent spray drying of a 20% w/w of mannitol solution in a custom-made spray dryer. Unlike the conventional intermittent drying process, which achieves intermittency by pulsating the properties of the carrier gas medium, the present works achieve intermittency by pulsating the nozzle spray. The estimated volumetric heat transfer coefficient varies between 0.8 and 2 kW/m3K, and the volumetric mass transfer coefficient is between 0.6 and 2.5 s−1. The correlation for heat and mass transfer coefficients is evolved that relates the heat and mass transfer coefficient with the flow properties and thermophysical properties of both the carrier gas and the precursor fluid in terms of Ohnesorge number and Nusselt number. The investigation uses response surface analysis to analyze the effect of Reynolds number of air and Ohnesorge number of precursors on the volumetric heat transfer coefficient. The results show that a decrease in Reynolds number for a wide range and Ohnesorge number causes the volumetric heat transfer coefficient to increase.
期刊介绍:
Drying Technology explores the science and technology, and the engineering aspects of drying, dewatering, and related topics.
Articles in this multi-disciplinary journal cover the following themes:
-Fundamental and applied aspects of dryers in diverse industrial sectors-
Mathematical modeling of drying and dryers-
Computer modeling of transport processes in multi-phase systems-
Material science aspects of drying-
Transport phenomena in porous media-
Design, scale-up, control and off-design analysis of dryers-
Energy, environmental, safety and techno-economic aspects-
Quality parameters in drying operations-
Pre- and post-drying operations-
Novel drying technologies.
This peer-reviewed journal provides an archival reference for scientists, engineers, and technologists in all industrial sectors and academia concerned with any aspect of thermal or nonthermal dehydration and allied operations.