Soonkyu Hwang , Chanyoung Joung , Woori Kim , Bernhard Palsson , Byung-Kwan Cho
{"title":"Recent advances in non-model bacterial chassis construction","authors":"Soonkyu Hwang , Chanyoung Joung , Woori Kim , Bernhard Palsson , Byung-Kwan Cho","doi":"10.1016/j.coisb.2023.100471","DOIUrl":null,"url":null,"abstract":"<div><p>The development of bacterial chassis to increase productivity and reduce industrial costs in value-added biochemical production has gained significant attention. Current efforts have focused on model bacteria, thus limiting their suitability to produce specialized products. Therefore, there is a growing emphasis on developing specialized non-model bacterial chassis to expand the repertoire of bioproducts. However, the lack of genetic information and tools for non-model bacteria remains challenging. In this review, we categorize and introduce non-model chassis based on their characteristics in relation to the target products. We also provide an overview of the trends in the development of genome-reduced chassis to enhance productivity. Furthermore, we propose synthetic biology technologies that can be applied to a broad range of non-model bacteria.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310023000288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
The development of bacterial chassis to increase productivity and reduce industrial costs in value-added biochemical production has gained significant attention. Current efforts have focused on model bacteria, thus limiting their suitability to produce specialized products. Therefore, there is a growing emphasis on developing specialized non-model bacterial chassis to expand the repertoire of bioproducts. However, the lack of genetic information and tools for non-model bacteria remains challenging. In this review, we categorize and introduce non-model chassis based on their characteristics in relation to the target products. We also provide an overview of the trends in the development of genome-reduced chassis to enhance productivity. Furthermore, we propose synthetic biology technologies that can be applied to a broad range of non-model bacteria.
期刊介绍:
Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution