Big Data, Small Pickings: Predicting the Stock Market with Google Trends

Q4 Economics, Econometrics and Finance Journal of Index Investing Pub Date : 2017-02-28 DOI:10.3905/jii.2017.7.4.075
W. Fong
{"title":"Big Data, Small Pickings: Predicting the Stock Market with Google Trends","authors":"W. Fong","doi":"10.3905/jii.2017.7.4.075","DOIUrl":null,"url":null,"abstract":"Big data such as Google Trends has stimulated much interest in the use of search query volumes for predicting social, business, and financial market trends. A recent paper by Preis, Moat, and Stanley [2013] claimed that a simple trading strategy using the Google Trends keyword debt powerfully predicts the Dow Jones Industrial Average stock index one week ahead and outperforms the buy-and-hold strategy by a factor of 20. Using the same sample period used by Preis, Moat, and Stanley, we show that debt completely loses its predictive power once look-ahead bias is eliminated. We find a similar result with a more recent sample period, from 2011 to 2016. Search terms that do outperform the buy-and-hold strategy generally have no economic meaning and are most likely spurious.","PeriodicalId":36431,"journal":{"name":"Journal of Index Investing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3905/jii.2017.7.4.075","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Index Investing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/jii.2017.7.4.075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 3

Abstract

Big data such as Google Trends has stimulated much interest in the use of search query volumes for predicting social, business, and financial market trends. A recent paper by Preis, Moat, and Stanley [2013] claimed that a simple trading strategy using the Google Trends keyword debt powerfully predicts the Dow Jones Industrial Average stock index one week ahead and outperforms the buy-and-hold strategy by a factor of 20. Using the same sample period used by Preis, Moat, and Stanley, we show that debt completely loses its predictive power once look-ahead bias is eliminated. We find a similar result with a more recent sample period, from 2011 to 2016. Search terms that do outperform the buy-and-hold strategy generally have no economic meaning and are most likely spurious.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大数据,小选择:用谷歌趋势预测股市
谷歌Trends等大数据激发了人们对使用搜索查询量来预测社会、商业和金融市场趋势的兴趣。Preis、Moat和Stanley[2013]最近的一篇论文声称,使用谷歌Trends关键字debt的简单交易策略有力地预测了一周后的道琼斯工业平均指数,其表现比买入并持有策略高出20倍。使用Preis、Moat和Stanley使用的相同样本期,我们表明,一旦消除了前瞻性偏差,债务就完全失去了预测能力。从2011年到2016年,我们发现了类似的结果。那些表现优于“买入并持有”策略的搜索词通常没有经济意义,而且很可能是虚假的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Index Investing
Journal of Index Investing Economics, Econometrics and Finance-Finance
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
Refusal as Repair Australia in the World’s Art Colonies 1900—Pyrrhic Victory Fugitive Abstraction Destruction or Secession?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1