A CFD model to assess lower Granite Dam operations under stratified conditions

M. Politano, R. Laughery
{"title":"A CFD model to assess lower Granite Dam operations under stratified conditions","authors":"M. Politano, R. Laughery","doi":"10.1080/23249676.2020.1831973","DOIUrl":null,"url":null,"abstract":"Elevated water temperature has deleterious effects on cold-water fish. Lower Granite (LWG) is a run-of-the river dam in the Pacific Northwest, USA. LWG impounds a reservoir, with capacity of 5.7×108 m3, that often become stratified. This paper presents a numerical model to assess LWG selective withdrawal operations to minimize thermal effects on fish. The model accounts for buoyancy forces, which are dominant at low river flowrates. The thermal model was validated against forebay temperature profiles and tailrace temperature on 3 July 2015. Twenty-six simulations were performed under different dam operations, stratification intensities and river flowrates. Numerical results indicate that the thermal stratification has a strong effect on the withdrawal region. Under stratified conditions, a high velocity layer at the intake elevation impacts the hydrodynamics and thermal capacity of the reservoir. According to the simulations, flow uniformly distributed across odd numbered powerhouse units is the best configuration to reduce downstream temperature.","PeriodicalId":51911,"journal":{"name":"Journal of Applied Water Engineering and Research","volume":"8 1","pages":"298 - 312"},"PeriodicalIF":1.4000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23249676.2020.1831973","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Water Engineering and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23249676.2020.1831973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 1

Abstract

Elevated water temperature has deleterious effects on cold-water fish. Lower Granite (LWG) is a run-of-the river dam in the Pacific Northwest, USA. LWG impounds a reservoir, with capacity of 5.7×108 m3, that often become stratified. This paper presents a numerical model to assess LWG selective withdrawal operations to minimize thermal effects on fish. The model accounts for buoyancy forces, which are dominant at low river flowrates. The thermal model was validated against forebay temperature profiles and tailrace temperature on 3 July 2015. Twenty-six simulations were performed under different dam operations, stratification intensities and river flowrates. Numerical results indicate that the thermal stratification has a strong effect on the withdrawal region. Under stratified conditions, a high velocity layer at the intake elevation impacts the hydrodynamics and thermal capacity of the reservoir. According to the simulations, flow uniformly distributed across odd numbered powerhouse units is the best configuration to reduce downstream temperature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在分层条件下评估花岗岩坝下游运行的CFD模型
水温升高对冷水鱼有有害影响。下花岗岩(LWG)是一个奔流河大坝在太平洋西北,美国。LWG蓄水池的容量为5.7×108 m3,通常形成分层。本文提出了一个数值模型来评估LWG选择性退出操作,以尽量减少对鱼的热效应。该模型考虑了浮力,这在低河水流量时起主导作用。2015年7月3日,根据前湾温度曲线和尾流温度对热模型进行了验证。在不同的大坝运行方式、分层强度和河流流速下进行了26次模拟。数值结果表明,热分层对回撤区有很强的影响。在分层条件下,进水口高程处的高速层会影响水库的水动力和热容量。模拟结果表明,奇数机组间流量均匀分布是降低下游温度的最佳配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
16.70%
发文量
31
期刊介绍: JAWER’s paradigm-changing (online only) articles provide directly applicable solutions to water engineering problems within the whole hydrosphere (rivers, lakes groundwater, estuaries, coastal and marine waters) covering areas such as: integrated water resources management and catchment hydraulics hydraulic machinery and structures hydraulics applied to water supply, treatment and drainage systems (including outfalls) water quality, security and governance in an engineering context environmental monitoring maritime hydraulics ecohydraulics flood risk modelling and management water related hazards desalination and re-use.
期刊最新文献
Reservoir operations under uncertainty with moving-horizon approach and ensemble forecast optimization The effect of upstream soil type on the amount of catchments sediment Suitability of substrate and vegetation for tropical green roofs River bank erosion vulnerability demarcation based on the sensitivity analysis of geotechnical parameters: Majuli Island, India An approach for water allocation with a couple surface and groundwater model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1