Klasifikasi Golongan Darah Menggunakan Artificial Neural Networks Berdasarkan Histogram Citra

Lailis Syafaah, Novendra Setyawan, Y. Hidayat
{"title":"Klasifikasi Golongan Darah Menggunakan Artificial Neural Networks Berdasarkan Histogram Citra","authors":"Lailis Syafaah, Novendra Setyawan, Y. Hidayat","doi":"10.22146/IJEIS.64049","DOIUrl":null,"url":null,"abstract":" Blood type in the medical world can be divided into 4 groups, namely A, B, AB and O. To be able to find out the blood type, a blood type test must be done. So far, human blood type detection is still done manually to observe the agglutination process. This research applies a blood type identification process using image processing. This system works by reading the blood type card image that has been filled with blood samples, then it will be processed through a histogram process to get the minimum and maximum RGB values and pixel locations which are then classified by Artificial Neural Networks (ANN) to determine the blood type from the training results and data matching. From the test results using 12 samples, it was found that the average error in blood type identification was 16.67%.","PeriodicalId":31590,"journal":{"name":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/IJEIS.64049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

 Blood type in the medical world can be divided into 4 groups, namely A, B, AB and O. To be able to find out the blood type, a blood type test must be done. So far, human blood type detection is still done manually to observe the agglutination process. This research applies a blood type identification process using image processing. This system works by reading the blood type card image that has been filled with blood samples, then it will be processed through a histogram process to get the minimum and maximum RGB values and pixel locations which are then classified by Artificial Neural Networks (ANN) to determine the blood type from the training results and data matching. From the test results using 12 samples, it was found that the average error in blood type identification was 16.67%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图像直方图的人工神经网络血液分类
医学界把血型分为A型、B型、AB型和o型。要想知道血型,就必须做血型测试。到目前为止,人类的血型检测仍然是手工进行的,以观察凝集过程。本研究应用了一种基于图像处理的血型识别方法。该系统的工作原理是读取已经填满血样的血型卡图像,然后通过直方图处理得到RGB最小值和最大值以及像素位置,然后通过人工神经网络(ANN)进行分类,从训练结果和数据匹配中确定血型。从12份样本的检测结果来看,血型鉴定的平均误差为16.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Utilization of Sensor technology as a Sport Technology Innovation in Athlete Performance Measurement: Research Trends Pemilah Jenis Daun Mangga Melalui Deteksi RGB Menggunakan Sistem Pengolahan Citra Sistem Pengering Daun Kelor Berbasis Internet of Things dan Artificial Intteligence Penghematan Daya Pada Sensor Node Sistem Monitoring Kualitas Udara Design and Build Hydroponic Installations and Applications Using IoT-Based Multisensors with Solar Panel Electrical Energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1