High-level RNA editing diversifies the coleoid cephalopod brain proteome.

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-11-17 DOI:10.1093/bfgp/elad034
Gjendine Voss, Joshua J C Rosenthal
{"title":"High-level RNA editing diversifies the coleoid cephalopod brain proteome.","authors":"Gjendine Voss, Joshua J C Rosenthal","doi":"10.1093/bfgp/elad034","DOIUrl":null,"url":null,"abstract":"<p><p>Coleoid cephalopods (octopus, squid and cuttlefish) have unusually complex nervous systems. The coleoid nervous system is also the only one currently known to recode the majority of expressed proteins through A-to-I RNA editing. The deamination of adenosine by adenosine deaminase acting on RNA (ADAR) enzymes produces inosine, which is interpreted as guanosine during translation. If this occurs in an open reading frame, which is the case for tens of thousands of editing sites in coleoids, it can recode the encoded protein. Here, we describe recent findings aimed at deciphering the mechanisms underlying high-level recoding and its adaptive potential. We describe the complement of ADAR enzymes in cephalopods, including a recently discovered novel domain in sqADAR1. We further summarize current evidence supporting an adaptive role of high-level RNA recoding in coleoids, and review recent studies showing that a large proportion of recoding sites is temperature-sensitive. Despite these new findings, the mechanisms governing the high level of RNA recoding in coleoid cephalopods remain poorly understood. Recent advances using genome editing in squid may provide useful tools to further study A-to-I RNA editing in these animals.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"525-532"},"PeriodicalIF":4.7000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elad034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Coleoid cephalopods (octopus, squid and cuttlefish) have unusually complex nervous systems. The coleoid nervous system is also the only one currently known to recode the majority of expressed proteins through A-to-I RNA editing. The deamination of adenosine by adenosine deaminase acting on RNA (ADAR) enzymes produces inosine, which is interpreted as guanosine during translation. If this occurs in an open reading frame, which is the case for tens of thousands of editing sites in coleoids, it can recode the encoded protein. Here, we describe recent findings aimed at deciphering the mechanisms underlying high-level recoding and its adaptive potential. We describe the complement of ADAR enzymes in cephalopods, including a recently discovered novel domain in sqADAR1. We further summarize current evidence supporting an adaptive role of high-level RNA recoding in coleoids, and review recent studies showing that a large proportion of recoding sites is temperature-sensitive. Despite these new findings, the mechanisms governing the high level of RNA recoding in coleoid cephalopods remain poorly understood. Recent advances using genome editing in squid may provide useful tools to further study A-to-I RNA editing in these animals.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高水平的RNA编辑使coleoid头足类动物脑蛋白质组多样化
类胶体头足类动物(章鱼、鱿鱼和墨鱼)有异常复杂的神经系统。胶体神经系统也是目前已知的唯一一个通过A-to-I RNA编辑来重新编码大多数表达蛋白的系统。腺苷脱氨酶作用于RNA (ADAR)酶对腺苷进行脱氨,产生肌苷,在翻译过程中被解释为鸟苷。如果这发生在一个开放的阅读框中,就像结肠中成千上万的编辑位点一样,它可以重新编码编码的蛋白质。在这里,我们描述了最近的研究结果,旨在破译高水平重新编码的机制及其适应潜力。我们描述了ADAR酶在头足类动物中的补体,包括最近在sqADAR1中发现的一个新结构域。我们进一步总结了目前支持高水平RNA编码在结肠中适应性作用的证据,并回顾了最近的研究表明,大部分编码位点是温度敏感的。尽管有这些新发现,但在类珊瑚头足类动物中控制高水平RNA重新编码的机制仍然知之甚少。鱿鱼基因组编辑的最新进展可能为进一步研究这些动物的A-to-I RNA编辑提供有用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Asymmetrically Wetted Trilayer-Structured Wound Dressing with Unidirectional Moisture Transport and Hemostatic Function. Theoretical and Experimental Studies of Aliovalent Effects in Color Tuning and Biocompatibility of Eu3+-Doped SrZrO3 Perovskite. Localized Delivery of Mesenchymal Stem Cell Spheroids via an Injectable Hydrogel for Rheumatoid Arthritis Therapy. Decellularized Extracellular Matrix-Based Tunable 3D Hydrogel: An Alternative Methodology for the Development of a Doxorubicin-Independent 3D Breast Cancer Microphysiological Chemoresistance Model. Composite Decellularized Corneal Hydrogel for Effective Corneal Injury Repair and Regeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1