Theoretical and Numerical Analyses of an Aluminium-Concrete Composite Beam with Channel Shear Connectors

Q2 Engineering Engineering Transactions Pub Date : 2019-08-02 DOI:10.24423/ENGTRANS.984.20190802
Ł. Polus, M. Szumigała
{"title":"Theoretical and Numerical Analyses of an Aluminium-Concrete Composite Beam with Channel Shear Connectors","authors":"Ł. Polus, M. Szumigała","doi":"10.24423/ENGTRANS.984.20190802","DOIUrl":null,"url":null,"abstract":"This paper presents a numerical simulation and a theoretical investigation of an aluminiumconcrete composite (ACC) beam subjected to bending. ACC structures are similar to steel-concrete composite (SCC) structures. However, their girders are made of aluminium instead of steel. The use of ACC structures is limited because of the lack of relevant design rules. Due to this fact the authors suggest applying the theory for SCC structures to ACC structures. In this paper, the methods for calculating the bending resistance and the stiffness of ACC beams were presented. What is more, the results from the theoretical investigation were compared with the results from the laboratory tests conducted by Stonehewer in 1962. The calculated plastic resistance moment of the ACC beam with partial shear connection was 1.2 times lower than the bending resistance from the laboratory test. The calculated stiffness was 1.1 higher than the stiffness from the laboratory test. What is more, the authors of this paper prepared two numerical models of the ACC beam. The analysed models had different types of connection between the aluminium beam and the concrete slab. In the first variant, the aluminium beam was permanently connected with the concrete slab to model full composite action. In the second variant, the aluminium beam and the concrete slab were connected using zero-length wires, the characteristics of which were taken from the laboratory test, to take slip into account. The numerical model with zero-length springs adequately captured the elastic response of the ACC beam from the laboratory test conducted by Stonehewer.","PeriodicalId":38552,"journal":{"name":"Engineering Transactions","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24423/ENGTRANS.984.20190802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a numerical simulation and a theoretical investigation of an aluminiumconcrete composite (ACC) beam subjected to bending. ACC structures are similar to steel-concrete composite (SCC) structures. However, their girders are made of aluminium instead of steel. The use of ACC structures is limited because of the lack of relevant design rules. Due to this fact the authors suggest applying the theory for SCC structures to ACC structures. In this paper, the methods for calculating the bending resistance and the stiffness of ACC beams were presented. What is more, the results from the theoretical investigation were compared with the results from the laboratory tests conducted by Stonehewer in 1962. The calculated plastic resistance moment of the ACC beam with partial shear connection was 1.2 times lower than the bending resistance from the laboratory test. The calculated stiffness was 1.1 higher than the stiffness from the laboratory test. What is more, the authors of this paper prepared two numerical models of the ACC beam. The analysed models had different types of connection between the aluminium beam and the concrete slab. In the first variant, the aluminium beam was permanently connected with the concrete slab to model full composite action. In the second variant, the aluminium beam and the concrete slab were connected using zero-length wires, the characteristics of which were taken from the laboratory test, to take slip into account. The numerical model with zero-length springs adequately captured the elastic response of the ACC beam from the laboratory test conducted by Stonehewer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带通道剪力连接件的铝-混凝土组合梁的理论与数值分析
本文对铝-混凝土复合材料(ACC)梁的弯曲进行了数值模拟和理论研究。ACC结构类似于钢-混凝土组合(SCC)结构。然而,他们的大梁是用铝而不是钢制成的。由于缺乏相关的设计规则,ACC结构的使用受到限制。由于这一事实,作者建议将SCC结构理论应用于ACC结构。本文介绍了ACC梁的抗弯承载力和刚度的计算方法。此外,理论调查的结果与1962年Stonehewer进行的实验室测试的结果进行了比较。计算得到的部分剪切连接ACC梁的塑性阻力矩比实验室试验的抗弯阻力低1.2倍。计算的刚度比实验室测试的刚度高1.1。此外,本文作者还编制了两个ACC光束的数值模型。所分析的模型在铝梁和混凝土板之间具有不同类型的连接。在第一种变体中,铝梁与混凝土板永久连接,以模拟全组合作用。在第二种变体中,铝梁和混凝土板使用零长电线连接,其特性取自实验室测试,以考虑滑移。具有零长度弹簧的数值模型充分捕捉了Stonehewer进行的实验室试验中ACC梁的弹性响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Transactions
Engineering Transactions Engineering-Engineering (all)
CiteScore
1.40
自引率
0.00%
发文量
0
期刊介绍: Engineering Transactions (formerly Rozprawy Inżynierskie) is a refereed international journal founded in 1952. The journal promotes research and practice in engineering science and provides a forum for interdisciplinary publications combining mechanics with: Material science, Mechatronics, Biomechanics and Biotechnologies, Environmental science, Photonics, Information technologies, Other engineering applications. The journal publishes original papers covering a broad area of research activities including: experimental and hybrid techniques, analytical and numerical approaches. Review articles and special issues are also welcome. Following long tradition, all articles are peer reviewed and our expert referees ensure that the papers accepted for publication comply with high scientific standards. Engineering Transactions is a quarterly journal intended to be interesting and useful for the researchers and practitioners in academic and industrial communities.
期刊最新文献
Investigation of non-stationary processes of an elastic half-space with a built-in elastic cylinder Free vibrations of a nonhomogeneous rod-cylindrical shell-fluid system Mixed-type variational principle for creep problems considering the aggressiveness of external fields Nonlinear feedback control of motion and power of moving sources during heating of the rod Academician Azat Mirzajanzade – 95
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1