Drivers of soil nitrogen availability and carbon exchange processes in a High Arctic wetland

IF 2.7 3区 地球科学 Q2 ECOLOGY Arctic Science Pub Date : 2023-08-11 DOI:10.1139/as-2022-0048
J. Hung, N. Scott, P. Treitz
{"title":"Drivers of soil nitrogen availability and carbon exchange processes in a High Arctic wetland","authors":"J. Hung, N. Scott, P. Treitz","doi":"10.1139/as-2022-0048","DOIUrl":null,"url":null,"abstract":"Increased soil nutrient availability, and associated increases in vegetation productivity, could create a negative feedback between Arctic ecosystems and the climate system, thereby reducing the contribution of Arctic ecosystems to future climate change. To predict whether this feedback will develop, it is important to understand the environmental controls over nutrient cycling in High Arctic ecosystems and their impact on carbon cycling processes. Here, we examined the environmental controls over soil nitrogen availability in a High Arctic wet sedge meadow and how abiotic factors and soil nitrogen influenced carbon dioxide exchange processes. The importance of environmental variables was consistent over the three years, but the magnitudes of their effect varied depending on climate conditions. Ammonium availability was higher in warmer years and wetter conditions, while drier areas within the wetland had higher nitrate availability. Carbon uptake was driven by soil moisture, active layer depth, and variability between sampling sites and years (R2 = 0.753), while ecosystem respiration was influenced by nitrogen availability, soil temperature, active layer depth, and sampling year (R2 = 0.848). Considered together, the future carbon dioxide source or sink potential of high latitude wetlands will largely depend on climate-induced changes in moisture and subsequent impacts on nutrient availability.","PeriodicalId":48575,"journal":{"name":"Arctic Science","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arctic Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1139/as-2022-0048","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Increased soil nutrient availability, and associated increases in vegetation productivity, could create a negative feedback between Arctic ecosystems and the climate system, thereby reducing the contribution of Arctic ecosystems to future climate change. To predict whether this feedback will develop, it is important to understand the environmental controls over nutrient cycling in High Arctic ecosystems and their impact on carbon cycling processes. Here, we examined the environmental controls over soil nitrogen availability in a High Arctic wet sedge meadow and how abiotic factors and soil nitrogen influenced carbon dioxide exchange processes. The importance of environmental variables was consistent over the three years, but the magnitudes of their effect varied depending on climate conditions. Ammonium availability was higher in warmer years and wetter conditions, while drier areas within the wetland had higher nitrate availability. Carbon uptake was driven by soil moisture, active layer depth, and variability between sampling sites and years (R2 = 0.753), while ecosystem respiration was influenced by nitrogen availability, soil temperature, active layer depth, and sampling year (R2 = 0.848). Considered together, the future carbon dioxide source or sink potential of high latitude wetlands will largely depend on climate-induced changes in moisture and subsequent impacts on nutrient availability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高北极湿地土壤氮有效性和碳交换过程的驱动因素
土壤养分有效性的增加以及相关的植被生产力的增加可能在北极生态系统和气候系统之间产生负反馈,从而减少北极生态系统对未来气候变化的贡献。为了预测这种反馈是否会发展,了解高北极生态系统中对养分循环的环境控制及其对碳循环过程的影响是很重要的。在这里,我们研究了环境对高寒湿莎草草甸土壤氮有效性的控制,以及非生物因素和土壤氮如何影响二氧化碳交换过程。环境变量的重要性在三年内是一致的,但其影响的大小因气候条件而异。在温暖湿润的年份,铵态氮的有效性较高,而在干燥地区,硝酸盐的有效性较高。碳吸收受土壤湿度、活性层深度和采样点年变异性的影响(R2 = 0.753),生态系统呼吸受氮有效性、土壤温度、活性层深度和采样年的影响(R2 = 0.848)。综合考虑,高纬度湿地未来的二氧化碳源或汇潜力将在很大程度上取决于气候引起的湿度变化及其对养分有效性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Arctic Science
Arctic Science Agricultural and Biological Sciences-General Agricultural and Biological Sciences
CiteScore
5.00
自引率
12.10%
发文量
81
期刊介绍: Arctic Science is an interdisciplinary journal that publishes original peer-reviewed research from all areas of natural science and applied science & engineering related to northern Polar Regions. The focus on basic and applied science includes the traditional knowledge and observations of the indigenous peoples of the region as well as cutting-edge developments in biological, chemical, physical and engineering science in all northern environments. Reports on interdisciplinary research are encouraged. Special issues and sections dealing with important issues in northern polar science are also considered.
期刊最新文献
Monitoring Canadian Arctic seabirds at the Prince Leopold Island Field Station, 1975-2023 Connecting Community-Based Monitoring to environmental governance in the Arctic: A systematic scoping review of the literature Characterization of anadromous Arctic char winter habitat and egg incubation areas in collaboration with Inuit fishers Worth the dip? Polar bear predation on swimming flightless greater gnow geese and estimation of energetic efficiency Radial growth of subarctic tree and shrub species: relationships with climate and association with the greening of the forest-tundra ecotone of subarctic Québec, Canada
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1