Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

S. Mavaddati
{"title":"Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains","authors":"S. Mavaddati","doi":"10.22044/JADM.2019.7402.1877","DOIUrl":null,"url":null,"abstract":"In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts including sparse representation and dictionary learning techniques to yield over-complete models in this processing field. There are color-based, statistical-based and texture-based features to represent the structural content of rice varieties. To achieve the desired results, different features from recorded images are extracted and used to learn the representative models of rice samples. Also, sparse principal component analysis and sparse structured principal component analysis is employed to reduce the dimension of classification problem and lead to an accurate detector with less computational time. The results of the proposed classifier based on the learned models are compared with the results obtained from neural network and support vector machine. Simulation results, along with a meaningful statistical test, show that the proposed algorithm based on the learned dictionaries derived from the combinational features can detect the type of rice grain and determine its quality precisely.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JADM.2019.7402.1877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts including sparse representation and dictionary learning techniques to yield over-complete models in this processing field. There are color-based, statistical-based and texture-based features to represent the structural content of rice varieties. To achieve the desired results, different features from recorded images are extracted and used to learn the representative models of rice samples. Also, sparse principal component analysis and sparse structured principal component analysis is employed to reduce the dimension of classification problem and lead to an accurate detector with less computational time. The results of the proposed classifier based on the learned models are compared with the results obtained from neural network and support vector machine. Simulation results, along with a meaningful statistical test, show that the proposed algorithm based on the learned dictionaries derived from the combinational features can detect the type of rice grain and determine its quality precisely.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稻米分类与品质检测的稀疏结构主成分分析与模型学习
在与现代农业相关的科学和商业领域,对不同类型的水稻进行分类并确定其质量是非常重要的。近年来,各种图像处理算法被应用于检测不同的农产品。本文基于模型学习概念,包括稀疏表示和字典学习技术,提出了水稻分类和品质检测问题,以在该处理领域产生超完整模型。有基于颜色、基于统计和基于纹理的特征来表示水稻品种的结构含量。为了获得期望的结果,从记录的图像中提取不同的特征,并将其用于学习水稻样本的代表性模型。此外,采用稀疏主成分分析和稀疏结构化主成分分析来降低分类问题的维数,并以较少的计算时间获得准确的检测器。将所提出的基于学习模型的分类器的结果与神经网络和支持向量机的结果进行了比较。仿真结果以及有意义的统计测试表明,所提出的算法基于从组合特征导出的学习字典,可以准确地检测稻米的类型并确定其质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Nasal Breath Input: Exploring Nasal Breath Input Method for Hands-Free Input by Using a Glasses Type Device with Piezoelectric Elements Sentiment Mining and Analysis over Text Corpora via Complex Deep Learning Naural Architectures An Intelligent Model for Prediction of In-Vitro Fertilization Success using MLP Neural Network and GA Optimization Robust Vein Recognition against Rotation Using Kernel Sparse Representation Improving Speed and Efficiency of Dynamic Programming Methods through Chaos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1