Laura Crespo-López , Alberto Martínez-Ramirez , Eduardo Sebastián , Giuseppe Cultrone
{"title":"Pomace from the wine industry as an additive in the production of traditional sustainable lightweight eco-bricks","authors":"Laura Crespo-López , Alberto Martínez-Ramirez , Eduardo Sebastián , Giuseppe Cultrone","doi":"10.1016/j.clay.2023.107084","DOIUrl":null,"url":null,"abstract":"<div><p>This research examines fired clay bricks made with waste pomace from the wine industry as an additive in brick production. To this end, we analyse and discuss the chemical, mineralogical, textural and physical-mechanical behaviour of fired bricks made with three concentrations of wine pomace (2.5, 5 and 10 wt%) and at three different firing temperatures (800, 950 and 1100 °C) and evaluate their durability to salt crystallization. Variations in colour were also examined. The firing process resulted in the decomposition of phyllosilicates and carbonates, the crystallization of Fe oxides and the appearance of high-temperature Ca- (and Mg-) silicates phases such as gehlenite, wollastonite, anorthite and diopside. The bricks made with added wine pomace had very similar mineralogy to the control samples made without it. The bricks made with added wine pomace were lighter than the control samples and underwent less linear shrinkage during the drying process. Particles in the wine pomace were consumed during firing, leading to the appearance of voids. The bricks made with this additive had higher levels of water absorption and poorer mechanical strength. The greatest colour differences were detected after increasing the amount of waste, which generally resulted in yellower bricks. The increase in firing temperature resulted in an improvement in mechanical resistance regardless of the composition of the bricks. However, bricks fired at 1100 °C made without additive are more resistant to damage caused by salts than those made with wine pomace.</p></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"243 ","pages":"Article 107084"},"PeriodicalIF":5.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169131723002715/pdfft?md5=5c6ed7ab2db3aad7c0f57c5ff4ad75e8&pid=1-s2.0-S0169131723002715-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131723002715","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2
Abstract
This research examines fired clay bricks made with waste pomace from the wine industry as an additive in brick production. To this end, we analyse and discuss the chemical, mineralogical, textural and physical-mechanical behaviour of fired bricks made with three concentrations of wine pomace (2.5, 5 and 10 wt%) and at three different firing temperatures (800, 950 and 1100 °C) and evaluate their durability to salt crystallization. Variations in colour were also examined. The firing process resulted in the decomposition of phyllosilicates and carbonates, the crystallization of Fe oxides and the appearance of high-temperature Ca- (and Mg-) silicates phases such as gehlenite, wollastonite, anorthite and diopside. The bricks made with added wine pomace had very similar mineralogy to the control samples made without it. The bricks made with added wine pomace were lighter than the control samples and underwent less linear shrinkage during the drying process. Particles in the wine pomace were consumed during firing, leading to the appearance of voids. The bricks made with this additive had higher levels of water absorption and poorer mechanical strength. The greatest colour differences were detected after increasing the amount of waste, which generally resulted in yellower bricks. The increase in firing temperature resulted in an improvement in mechanical resistance regardless of the composition of the bricks. However, bricks fired at 1100 °C made without additive are more resistant to damage caused by salts than those made with wine pomace.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...