Jay Bergeron, Anh-Duong Nguyen, C. Alt, Nicole Brewster, Le Quoc Cuong, Thomas Krohn, Vi-Minh Luong, Michael Nguyen, A. Telenti, Jennifer Wulff, Sean Moss-Pultz
{"title":"Simulating patient matching to clinical trials using a property rights blockchain","authors":"Jay Bergeron, Anh-Duong Nguyen, C. Alt, Nicole Brewster, Le Quoc Cuong, Thomas Krohn, Vi-Minh Luong, Michael Nguyen, A. Telenti, Jennifer Wulff, Sean Moss-Pultz","doi":"10.4103/digm.digm_30_19","DOIUrl":null,"url":null,"abstract":"Objective: Biomedical data processing generally requires the secure stepwise transfer of sensitive personal information across multiple parties. Mediating such operations using distributed secure digital ledgers, i.e., blockchains, is investigated in this article. Materials and Methods: The bitmark property rights blockchain was used to simulate the process of assessing individuals for enrollment to specific clinical trials. In the scenario presented, a sponsor publishes a recruitment call for a clinical trial and patients signal their willingness to participate in the trial through blockchain transactions. The blockchain creates and maintains digital references of the medical data assets of prospective study participants as well as digital property certificates for assigning access rights to corresponding medical data assets. Trial matching services review the patient blockchain records and recommend study participants that are likely to meet the enrollment criteria of recruiting clinical trials. Digital certificates assign transient access rights to the data assets of the prospective study participants. These certificates are transferred to pertinent matching services and sponsors, allowing these organizations to examine the candidacy of each prospective study participant. Results: The trial matching simulation demonstrates that property rights blockchains can implement complicated multiparty interactions, such as those associated with medical data exchange, without supplemental peer-to-peer communications. Conclusions: Blockchain-based data marketplaces of the type described, when coupled with data-controlled virtual infrastructure environments (i.e., Medical Data Trusts), provide a viable model for managing the transfer, provenance, and processing of individual health information.","PeriodicalId":72818,"journal":{"name":"Digital medicine","volume":"6 1","pages":"44 - 52"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/digm.digm_30_19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Objective: Biomedical data processing generally requires the secure stepwise transfer of sensitive personal information across multiple parties. Mediating such operations using distributed secure digital ledgers, i.e., blockchains, is investigated in this article. Materials and Methods: The bitmark property rights blockchain was used to simulate the process of assessing individuals for enrollment to specific clinical trials. In the scenario presented, a sponsor publishes a recruitment call for a clinical trial and patients signal their willingness to participate in the trial through blockchain transactions. The blockchain creates and maintains digital references of the medical data assets of prospective study participants as well as digital property certificates for assigning access rights to corresponding medical data assets. Trial matching services review the patient blockchain records and recommend study participants that are likely to meet the enrollment criteria of recruiting clinical trials. Digital certificates assign transient access rights to the data assets of the prospective study participants. These certificates are transferred to pertinent matching services and sponsors, allowing these organizations to examine the candidacy of each prospective study participant. Results: The trial matching simulation demonstrates that property rights blockchains can implement complicated multiparty interactions, such as those associated with medical data exchange, without supplemental peer-to-peer communications. Conclusions: Blockchain-based data marketplaces of the type described, when coupled with data-controlled virtual infrastructure environments (i.e., Medical Data Trusts), provide a viable model for managing the transfer, provenance, and processing of individual health information.