Effect of meta substitution of methyl group on 2-hydroxypyridine: Spectroscopic investigation

IF 0.3 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY Lithuanian Journal of Physics Pub Date : 2020-02-05 DOI:10.3952/physics.v60i1.4162
A. Srivastava, S. Saxena
{"title":"Effect of meta substitution of methyl group on 2-hydroxypyridine: Spectroscopic investigation","authors":"A. Srivastava, S. Saxena","doi":"10.3952/physics.v60i1.4162","DOIUrl":null,"url":null,"abstract":"We have reported here the detailed investigation of the effect of methyl group substitution on the meta-position of the 2-hydroxypyridine molecule. Resonance enhanced multiphoton ionization (REMPI), FT-IR and Raman spectroscopic techniques have been used for the experimental study of the molecules. Ab initio calculations were used for theoretical investigations of the molecules. The origin band of the molecules 3-methyl-2-hydroxypyridine (3M2HP) and 5-methyl-2-hydroxypyridine (5M2HP) was observed at 33830 and 34105 cm–1 in their REMPI spectroscopy, and the bands assigned as a ππ* transition state. The vibronic coupling of nπ* and ππ* transition states took place in 3M2HP, thus some low intense bands near the origin band of the molecule were observed in the REMPI spectrum. However, there was no such kind of bands in 5M2HP. The π*–σ* hyperconjugation is responsible for the conformational change of the methyl group in 3M2HP upon excitation (S0 → S1).","PeriodicalId":18144,"journal":{"name":"Lithuanian Journal of Physics","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2020-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithuanian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3952/physics.v60i1.4162","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

We have reported here the detailed investigation of the effect of methyl group substitution on the meta-position of the 2-hydroxypyridine molecule. Resonance enhanced multiphoton ionization (REMPI), FT-IR and Raman spectroscopic techniques have been used for the experimental study of the molecules. Ab initio calculations were used for theoretical investigations of the molecules. The origin band of the molecules 3-methyl-2-hydroxypyridine (3M2HP) and 5-methyl-2-hydroxypyridine (5M2HP) was observed at 33830 and 34105 cm–1 in their REMPI spectroscopy, and the bands assigned as a ππ* transition state. The vibronic coupling of nπ* and ππ* transition states took place in 3M2HP, thus some low intense bands near the origin band of the molecule were observed in the REMPI spectrum. However, there was no such kind of bands in 5M2HP. The π*–σ* hyperconjugation is responsible for the conformational change of the methyl group in 3M2HP upon excitation (S0 → S1).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甲基间位取代对2-羟基吡啶的影响:光谱研究
本文报道了甲基取代对2-羟基吡啶分子位的影响。共振增强多光子电离(REMPI)、傅里叶变换红外(FT-IR)和拉曼光谱技术已被用于分子的实验研究。从头计算用于分子的理论研究。3-甲基-2-羟吡啶(3M2HP)和5-甲基-2-羟吡啶(5M2HP)分子在33830和34105 cm-1处的REMPI谱带为ππ*过渡态。在3M2HP中发生了nπ*和ππ*过渡态的振动耦合,因此在REMPI光谱中在分子起始带附近观察到一些低强度带。而在5M2HP中没有这种波段。π* -σ *超共轭引起了3M2HP中甲基在激发(S0→S1)时的构象变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Lithuanian Journal of Physics
Lithuanian Journal of Physics 物理-物理:综合
CiteScore
0.90
自引率
16.70%
发文量
21
审稿时长
>12 weeks
期刊介绍: The main aim of the Lithuanian Journal of Physics is to reflect the most recent advances in various fields of theoretical, experimental, and applied physics, including: mathematical and computational physics; subatomic physics; atoms and molecules; chemical physics; electrodynamics and wave processes; nonlinear and coherent optics; spectroscopy.
期刊最新文献
The XYZ model in the mean-field approximation in terms of Pauli spin matrices New approach to evaluating the thermodynamic consistency of melts in the ‘metal-slag’ system based on interatomic interaction parameters Predicting nonradiative decay barrier of BODIPY dye in polar environment by applying ONIOM multiscale method Optical characteristics of structures with silicon nanowires and metal nanoparticles Second-order Rayleigh–Schrödinger perturbation theory for the GRASP2018 package: Core–valence correlations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1