Single-atom Tracing in a Model Network of Carbohydrate Metabolism and Pathway Selection

Q3 Biochemistry, Genetics and Molecular Biology IPSJ Transactions on Bioinformatics Pub Date : 2018-06-01 DOI:10.2197/IPSJTBIO.11.1
J. Ohta
{"title":"Single-atom Tracing in a Model Network of Carbohydrate Metabolism and Pathway Selection","authors":"J. Ohta","doi":"10.2197/IPSJTBIO.11.1","DOIUrl":null,"url":null,"abstract":": Studies on computation of pathways connecting two metabolites have been reported. However, they did not intend to find pathways containing cycling, although there are biologically important cycles such as citric acid cycle (CAC). Whilst computation of pathways connecting two atoms, single-atom tracing, would contribute to finding pathways which include those containing cycling, it produces too many pathways to examine. The present article proposes a strategy to select pathways from those obtained by single-atom tracing, where coexistence of reactions on each pathway, specifically coexistence of a reaction and its reverse reaction forming a futile cycle together or reactions regulated in a reciprocal manner, is checked to select pathways based on biochemical meaning of the pathway. Using this strategy, 121 pathways were selected from total 7876 pathways from carbon atoms of glucose to CO 2 in a model network of carbohydrate metabolism. The selected pathways included pathways using reactions or metabolites of CAC or pentose phosphate pathway multiple times. These results indicate that the proposed strategy can contribute to listing a limited number of pathways which include those containing cycling as possibly biochemically meaningful pathways.","PeriodicalId":38959,"journal":{"name":"IPSJ Transactions on Bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/IPSJTBIO.11.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

: Studies on computation of pathways connecting two metabolites have been reported. However, they did not intend to find pathways containing cycling, although there are biologically important cycles such as citric acid cycle (CAC). Whilst computation of pathways connecting two atoms, single-atom tracing, would contribute to finding pathways which include those containing cycling, it produces too many pathways to examine. The present article proposes a strategy to select pathways from those obtained by single-atom tracing, where coexistence of reactions on each pathway, specifically coexistence of a reaction and its reverse reaction forming a futile cycle together or reactions regulated in a reciprocal manner, is checked to select pathways based on biochemical meaning of the pathway. Using this strategy, 121 pathways were selected from total 7876 pathways from carbon atoms of glucose to CO 2 in a model network of carbohydrate metabolism. The selected pathways included pathways using reactions or metabolites of CAC or pentose phosphate pathway multiple times. These results indicate that the proposed strategy can contribute to listing a limited number of pathways which include those containing cycling as possibly biochemically meaningful pathways.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳水化合物代谢和途径选择模型网络中的单原子示踪
:已经报道了关于连接两种代谢物的途径计算的研究。然而,尽管存在柠檬酸循环(CAC)等生物学上重要的循环,但他们并不打算确定包含循环的途径。虽然计算连接两个原子的途径,即单原子追踪,将有助于确定包括那些包含循环的途径在内的途径,但它产生了太多的途径,无法检查。本文提出了一种从单原子示踪获得的途径中选择途径的策略,其中检查每条途径上反应的共存、反应及其反向反应的特定共存,共同形成无效循环或以互惠方式调节的反应,以根据途径的生化学意义选择途径。使用该策略,在碳水化合物代谢的模型网络中,从从葡萄糖的碳原子到CO2的总共7876个途径中选择了121个途径。所选择的途径包括多次使用CAC或磷酸戊糖途径的反应或代谢产物的途径。这些结果表明,所提出的策略有助于列出有限数量的途径,其中包括那些包含循环的可能具有生物化学意义的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IPSJ Transactions on Bioinformatics
IPSJ Transactions on Bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
1.90
自引率
0.00%
发文量
3
期刊最新文献
A High-speed Measurement System for Treadmill Spherical Motion in Virtual Reality for Mice and a Robust Rotation Axis Estimation Algorithm Based on Spherical Geometry Metabolic Network Analysis by Time-series Causal Inference Using the Multi-dimensional Space of Prediction Errors AtLASS: A Scheme for End-to-End Prediction of Splice Sites Using Attention-based Bi-LSTM Erratum: A High-speed Measurement System for Treadmill Spherical Motion in Virtual Reality for Mice and a Robust Rotation Axis Estimation Algorithm Based on Spherical Geometry [IPSJ Transactions on Bioinformatics Vol.16 pp.1-12] A Novel Metagenomic Binning Framework Using NLP Techniques in Feature Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1