Leave-one-out evaluation of the nearest feature line and the rectified nearest feature line segment classifiers using Multi-core architectures

Ana-Lorena Uribe-Hurtado, M. Orozco-Alzate, Eduardo-José Villegas-Jaramillo
{"title":"Leave-one-out evaluation of the nearest feature line and the rectified nearest feature line segment classifiers using Multi-core architectures","authors":"Ana-Lorena Uribe-Hurtado, M. Orozco-Alzate, Eduardo-José Villegas-Jaramillo","doi":"10.17230/INGCIENCIA.14.27.4","DOIUrl":null,"url":null,"abstract":"In this paper we present the parallelization of the leave-one-out test: areproducible test that is, in general, computationally expensive. Paral-lelization was implemented on multi-core multi-threaded architectures, us-ing the Flynn Single Instruction Multiple Data taxonomy. This techniquewas used for the preprocessing and processing stages of two classificationalgorithms that are oriented to enrich the representation in small samplecases: the nearest feature line (NFL) algorithm and the rectified nearestfeature line segment (RNFLS) algorithm. Results show an accelerationof up to 18.17 times with the smallest dataset and 29.91 times with thelargest one, using the most costly algorithm (RNFLS) whose complexityisO(n4). The paper also shows the pseudo-codes of the serial and parallel algorithms using, in the latter case, a notation that describes the way theparallelization was carried out as a function of the threads.","PeriodicalId":30405,"journal":{"name":"Ingenieria y Ciencia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ingenieria y Ciencia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17230/INGCIENCIA.14.27.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we present the parallelization of the leave-one-out test: areproducible test that is, in general, computationally expensive. Paral-lelization was implemented on multi-core multi-threaded architectures, us-ing the Flynn Single Instruction Multiple Data taxonomy. This techniquewas used for the preprocessing and processing stages of two classificationalgorithms that are oriented to enrich the representation in small samplecases: the nearest feature line (NFL) algorithm and the rectified nearestfeature line segment (RNFLS) algorithm. Results show an accelerationof up to 18.17 times with the smallest dataset and 29.91 times with thelargest one, using the most costly algorithm (RNFLS) whose complexityisO(n4). The paper also shows the pseudo-codes of the serial and parallel algorithms using, in the latter case, a notation that describes the way theparallelization was carried out as a function of the threads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用多核架构对最近的特征线和校正的最近的特征线段分类器进行留一评估
在本文中,我们提出了“留一”测试的并行化:一个可生产的测试,通常计算成本很高。并行化是在多核多线程体系结构上实现的,使用Flynn单指令多数据分类法。该技术用于两种分类算法的预处理和处理阶段,这两种算法旨在丰富小样本情况下的表示:最近特征线(NFL)算法和校正最近特征线段(RNFLS)算法。结果显示,使用复杂度为O(n4)的最昂贵算法(RNFLS),最小数据集的加速率高达18.17倍,最大数据集的加快率高达29.91倍。本文还展示了串行和并行算法的伪代码,在后一种情况下,使用一种符号来描述并行化作为线程函数的执行方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
期刊最新文献
Aprendizaje profundo para escalas pronósticas en la prescripción a pacientes con riesgo de sangrado gastrointestinal Determinantes del precio de la vivienda nueva en Bogotá para el año 2019: una aproximación a través de un modelo semiparamétrico de regresión espacial Lie Algebra Representation, Conservation Laws and Some Invariant Solutions for a Generalized Emden-Fowler Equation Propuesta de un dispositivo refrigerante con celdas Peltier alimentado con un sistema fotovoltaico independiente: un caso de estudio Experimental Development of Fuzzy Controllers for Thermal and Pneumatic Processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1