{"title":"Resource-efficient workload task scheduling for cloud-assisted internet of things environment","authors":"Naveen Kumar Chowdaiah, Annapurna Dammur","doi":"10.11591/ijece.v13i5.pp5898-5907","DOIUrl":null,"url":null,"abstract":"One of the most challenging tasks in the internet of things-cloud-based environment is the resource allocation for the tasks. The cloud provides various resources such as virtual machines, computational cores, networks, and other resources for the execution of the various tasks of the internet of things (IoT). Moreover, some methods are used for executing IoT tasks using an optimal resource management system but these methods are not efficient. Hence, in this research, we present a resource-efficient workload task scheduling (RWTS) model for a cloud-assisted IoT environment to execute the IoT task which utilizes few numbers of resources to bring a good tradeoff, achieve high performance using fewer resources of the cloud, compute the number of resources required for the execution of the IoT task such as bandwidth and computational core. Furthermore, this model mainly focuses to reduce energy consumption and also provides a task scheduling model to schedule the IoT tasks in an IoT-cloud-based environment. The experimentation has been done using the Montage workflow and the results have been obtained in terms of execution time, power sum, average power, and energy consumption. When compared with the existing model, the RWTS model performs better when the size of the tasks is increased.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5898-5907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1
Abstract
One of the most challenging tasks in the internet of things-cloud-based environment is the resource allocation for the tasks. The cloud provides various resources such as virtual machines, computational cores, networks, and other resources for the execution of the various tasks of the internet of things (IoT). Moreover, some methods are used for executing IoT tasks using an optimal resource management system but these methods are not efficient. Hence, in this research, we present a resource-efficient workload task scheduling (RWTS) model for a cloud-assisted IoT environment to execute the IoT task which utilizes few numbers of resources to bring a good tradeoff, achieve high performance using fewer resources of the cloud, compute the number of resources required for the execution of the IoT task such as bandwidth and computational core. Furthermore, this model mainly focuses to reduce energy consumption and also provides a task scheduling model to schedule the IoT tasks in an IoT-cloud-based environment. The experimentation has been done using the Montage workflow and the results have been obtained in terms of execution time, power sum, average power, and energy consumption. When compared with the existing model, the RWTS model performs better when the size of the tasks is increased.
期刊介绍:
International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]