PUBA: Privacy-Preserving User-Data Bookkeeping and Analytics

Valerie Fetzer, Marcel Keller, Sven Maier, Markus Raiber, Andy Rupp, Rebecca Schwerdt
{"title":"PUBA: Privacy-Preserving User-Data Bookkeeping and Analytics","authors":"Valerie Fetzer, Marcel Keller, Sven Maier, Markus Raiber, Andy Rupp, Rebecca Schwerdt","doi":"10.2478/popets-2022-0054","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we propose Privacy-preserving User-data Bookkeeping & Analytics (PUBA), a building block destined to enable the implementation of business models (e.g., targeted advertising) and regulations (e.g., fraud detection) requiring user-data analysis in a privacy-preserving way. In PUBA, users keep an unlinkable but authenticated cryptographic logbook containing their historic data on their device. This logbook can only be updated by the operator while its content is not revealed. Users can take part in a privacy-preserving analytics computation, where it is ensured that their logbook is up-to-date and authentic while the potentially secret analytics function is verified to be privacy-friendly. Taking constrained devices into account, users may also outsource analytic computations (to a potentially malicious proxy not colluding with the operator).We model our novel building block in the Universal Composability framework and provide a practical protocol instantiation. To demonstrate the flexibility of PUBA, we sketch instantiations of privacy-preserving fraud detection and targeted advertising, although it could be used in many more scenarios, e.g. data analytics for multi-modal transportation systems. We implemented our bookkeeping protocols and an exemplary outsourced analytics computation based on logistic regression using the MP-SPDZ MPC framework. Performance evaluations using a smartphone as user device and more powerful hardware for operator and proxy suggest that PUBA for smaller logbooks can indeed be practical.","PeriodicalId":74556,"journal":{"name":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","volume":"2022 1","pages":"447 - 516"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/popets-2022-0054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In this paper we propose Privacy-preserving User-data Bookkeeping & Analytics (PUBA), a building block destined to enable the implementation of business models (e.g., targeted advertising) and regulations (e.g., fraud detection) requiring user-data analysis in a privacy-preserving way. In PUBA, users keep an unlinkable but authenticated cryptographic logbook containing their historic data on their device. This logbook can only be updated by the operator while its content is not revealed. Users can take part in a privacy-preserving analytics computation, where it is ensured that their logbook is up-to-date and authentic while the potentially secret analytics function is verified to be privacy-friendly. Taking constrained devices into account, users may also outsource analytic computations (to a potentially malicious proxy not colluding with the operator).We model our novel building block in the Universal Composability framework and provide a practical protocol instantiation. To demonstrate the flexibility of PUBA, we sketch instantiations of privacy-preserving fraud detection and targeted advertising, although it could be used in many more scenarios, e.g. data analytics for multi-modal transportation systems. We implemented our bookkeeping protocols and an exemplary outsourced analytics computation based on logistic regression using the MP-SPDZ MPC framework. Performance evaluations using a smartphone as user device and more powerful hardware for operator and proxy suggest that PUBA for smaller logbooks can indeed be practical.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PUBA:隐私保护用户数据簿记和分析
在本文中,我们提出了保护隐私的用户数据簿记与分析(PUBA),这是一个构建块,旨在实现需要以保护隐私的方式进行用户数据分析的商业模型(例如,定向广告)和法规(例如,欺诈检测)。在《绝地求生》中,用户在他们的设备上保留了一个不可链接但经过认证的加密日志,其中包含他们的历史数据。该日志只能由操作员更新,但不显示其内容。用户可以参与保护隐私的分析计算,确保他们的日志是最新的和真实的,而潜在的秘密分析功能被验证为隐私友好。考虑到受约束的设备,用户还可以将分析计算外包(给没有与运营商串通的潜在恶意代理)。我们在通用可组合性框架中为我们的新构建块建模,并提供了一个实用的协议实例化。为了展示PUBA的灵活性,我们概述了隐私保护欺诈检测和定向广告的实例,尽管它可以用于更多场景,例如多式联运系统的数据分析。我们使用MP-SPDZ MPC框架实现了我们的簿记协议和一个基于逻辑回归的示例外包分析计算。使用智能手机作为用户设备和更强大的硬件作为操作员和代理的性能评估表明,PUBA用于更小的日志确实是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
Editors' Introduction Compact and Divisible E-Cash with Threshold Issuance On the Robustness of Topics API to a Re-Identification Attack DP-SIPS: A simpler, more scalable mechanism for differentially private partition selection Privacy-Preserving Federated Recurrent Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1