Mengmeng Liu, Jiping Liu, Shenghua Xu, Tao Zhou, Yu Ma, Fuhao Zhang, M. Konečný
{"title":"Landslide susceptibility mapping with the fusion of multi-feature SVM model based FCM sampling strategy: A case study from Shaanxi Province","authors":"Mengmeng Liu, Jiping Liu, Shenghua Xu, Tao Zhou, Yu Ma, Fuhao Zhang, M. Konečný","doi":"10.1080/19479832.2021.1961316","DOIUrl":null,"url":null,"abstract":"ABSTRACT The quality of “non-landslide’ samples data impacts the accuracy of geological hazard risk assessment. This research proposed a method to improve the performance of support vector machine (SVM) by perfecting the quality of ‘non-landslide’ samples in the landslide susceptibility evaluation model through fuzzy c-means (FCM) cluster to generate more reliable susceptibility maps. Firstly, three sample selection scenarios for ‘non-landslide’ samples include the following principles: 1) select randomly from low-slope areas (scenario-SS), 2) select randomly from areas with no hazards (scenario-RS), 3) obtain samples from the optimal FCM model (scenario-FCM), and then three sample scenarios are constructed with 10,193 landslide positive samples. Next, we have compared and evaluated the performance of three sample scenarios in the SVM models based on the statistical indicators such as the proportion of disaster points, density of disaster points precision, receiver operating characteristic (ROC) curve, and area under the ROC curve (AUC). Finally, The evaluation results show that the ‘non-landslide’ negative samples based on the FCM model are more reasonable. Furthermore, the hybrid method supported by SVM and FCM models exhibits the highest prediction efficiency. Scenario FCM produces an overall accuracy of approximately 89.7% (AUC), followed by scenario-SS (86.7%) and scenario-RS (85.6%).","PeriodicalId":46012,"journal":{"name":"International Journal of Image and Data Fusion","volume":"12 1","pages":"349 - 366"},"PeriodicalIF":1.8000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Data Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19479832.2021.1961316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 4
Abstract
ABSTRACT The quality of “non-landslide’ samples data impacts the accuracy of geological hazard risk assessment. This research proposed a method to improve the performance of support vector machine (SVM) by perfecting the quality of ‘non-landslide’ samples in the landslide susceptibility evaluation model through fuzzy c-means (FCM) cluster to generate more reliable susceptibility maps. Firstly, three sample selection scenarios for ‘non-landslide’ samples include the following principles: 1) select randomly from low-slope areas (scenario-SS), 2) select randomly from areas with no hazards (scenario-RS), 3) obtain samples from the optimal FCM model (scenario-FCM), and then three sample scenarios are constructed with 10,193 landslide positive samples. Next, we have compared and evaluated the performance of three sample scenarios in the SVM models based on the statistical indicators such as the proportion of disaster points, density of disaster points precision, receiver operating characteristic (ROC) curve, and area under the ROC curve (AUC). Finally, The evaluation results show that the ‘non-landslide’ negative samples based on the FCM model are more reasonable. Furthermore, the hybrid method supported by SVM and FCM models exhibits the highest prediction efficiency. Scenario FCM produces an overall accuracy of approximately 89.7% (AUC), followed by scenario-SS (86.7%) and scenario-RS (85.6%).
期刊介绍:
International Journal of Image and Data Fusion provides a single source of information for all aspects of image and data fusion methodologies, developments, techniques and applications. Image and data fusion techniques are important for combining the many sources of satellite, airborne and ground based imaging systems, and integrating these with other related data sets for enhanced information extraction and decision making. Image and data fusion aims at the integration of multi-sensor, multi-temporal, multi-resolution and multi-platform image data, together with geospatial data, GIS, in-situ, and other statistical data sets for improved information extraction, as well as to increase the reliability of the information. This leads to more accurate information that provides for robust operational performance, i.e. increased confidence, reduced ambiguity and improved classification enabling evidence based management. The journal welcomes original research papers, review papers, shorter letters, technical articles, book reviews and conference reports in all areas of image and data fusion including, but not limited to, the following aspects and topics: • Automatic registration/geometric aspects of fusing images with different spatial, spectral, temporal resolutions; phase information; or acquired in different modes • Pixel, feature and decision level fusion algorithms and methodologies • Data Assimilation: fusing data with models • Multi-source classification and information extraction • Integration of satellite, airborne and terrestrial sensor systems • Fusing temporal data sets for change detection studies (e.g. for Land Cover/Land Use Change studies) • Image and data mining from multi-platform, multi-source, multi-scale, multi-temporal data sets (e.g. geometric information, topological information, statistical information, etc.).