Optimal index and averaging principle for Itô–Doob stochastic fractional differential equations

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Stochastics and Dynamics Pub Date : 2022-02-25 DOI:10.1142/s0219493722500186
Wenya Wang, Zhongkai Guo
{"title":"Optimal index and averaging principle for Itô–Doob stochastic fractional differential equations","authors":"Wenya Wang, Zhongkai Guo","doi":"10.1142/s0219493722500186","DOIUrl":null,"url":null,"abstract":"In this paper, a class of Itô–Doob stochastic fractional differential equations (Itô–Doob SFDEs) models are discussed. Using the time scale transformation method, we consider the averaging principle of the transformed equations and establish the relevant results. At the same time, we find that the optimal index for the original Itô–Doob SFDEs can be determined, the selection of such index is similar to the classical stochastic differential equations model.","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219493722500186","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, a class of Itô–Doob stochastic fractional differential equations (Itô–Doob SFDEs) models are discussed. Using the time scale transformation method, we consider the averaging principle of the transformed equations and establish the relevant results. At the same time, we find that the optimal index for the original Itô–Doob SFDEs can be determined, the selection of such index is similar to the classical stochastic differential equations model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
It–Doob随机分数微分方程的最优指标及其平均原理
本文讨论了一类It–Doob随机分数阶微分方程(It–Doob-SFDEs)模型。利用时标变换方法,我们考虑了变换方程的平均原理,并建立了相应的结果。同时,我们发现可以确定原始It–Doob SFDE的最优指标,该指标的选择与经典随机微分方程模型相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Stochastics and Dynamics
Stochastics and Dynamics 数学-统计学与概率论
CiteScore
1.70
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: This interdisciplinary journal is devoted to publishing high quality papers in modeling, analyzing, quantifying and predicting stochastic phenomena in science and engineering from a dynamical system''s point of view. Papers can be about theory, experiments, algorithms, numerical simulation and applications. Papers studying the dynamics of stochastic phenomena by means of random or stochastic ordinary, partial or functional differential equations or random mappings are particularly welcome, and so are studies of stochasticity in deterministic systems.
期刊最新文献
Reflected stochastic differential equations driven by standard and fractional Brownian motion Dynamical behaviors of an impulsive stochastic neural field lattice model Reflected BSDEs driven by G-Brownian motion with time-varying Lipschitz coefficients Estimates of constants in the limit theorems for chaotic dynamical systems Binary robustness of random attractors for 2D-Ginzburg–Landau equations with Wong–Zakai noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1