P. Sanderson, R. Loeb, H. Liley, David Liu, E. Paterson, Kelly Hinckfuss, J. Zestic
{"title":"Signaling Patient Oxygen Desaturation with Enhanced Pulse Oximetry Tones.","authors":"P. Sanderson, R. Loeb, H. Liley, David Liu, E. Paterson, Kelly Hinckfuss, J. Zestic","doi":"10.2345/1943-5967-56.2.46","DOIUrl":null,"url":null,"abstract":"Manufacturers could improve the pulse tones emitted by pulse oximeters to support more accurate identification of a patient's peripheral oxygen saturation (SpO2) range. In this article, we outline the strengths and limitations of the variable-pitch tone that represents SpO2 of each detected pulse, and we argue that enhancements to the tone to demarcate clinically relevant ranges are feasible and desirable. The variable-pitch tone is an appreciated and trusted feature of the pulse oximeter's user interface. However, studies show that it supports relative judgments of SpO2 trends over time and is less effective at supporting absolute judgments about the SpO2 number or conveying when SpO2 moves into clinically important ranges. We outline recent studies that tested whether acoustic enhancements to the current tone could convey clinically important ranges more directly, without necessarily using auditory alarms. The studies cover the use of enhanced variable-pitch pulse oximeter tones for neonatal and adult use. Compared with current tones, the characteristics of the enhanced tones represent improvements that are both clinically relevant and statistically significant. We outline the benefits of enhanced tones, as well as discuss constraints of which developers of enhanced tones should be aware if enhancements are to be successful.","PeriodicalId":35656,"journal":{"name":"Biomedical Instrumentation and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Instrumentation and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2345/1943-5967-56.2.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 4
Abstract
Manufacturers could improve the pulse tones emitted by pulse oximeters to support more accurate identification of a patient's peripheral oxygen saturation (SpO2) range. In this article, we outline the strengths and limitations of the variable-pitch tone that represents SpO2 of each detected pulse, and we argue that enhancements to the tone to demarcate clinically relevant ranges are feasible and desirable. The variable-pitch tone is an appreciated and trusted feature of the pulse oximeter's user interface. However, studies show that it supports relative judgments of SpO2 trends over time and is less effective at supporting absolute judgments about the SpO2 number or conveying when SpO2 moves into clinically important ranges. We outline recent studies that tested whether acoustic enhancements to the current tone could convey clinically important ranges more directly, without necessarily using auditory alarms. The studies cover the use of enhanced variable-pitch pulse oximeter tones for neonatal and adult use. Compared with current tones, the characteristics of the enhanced tones represent improvements that are both clinically relevant and statistically significant. We outline the benefits of enhanced tones, as well as discuss constraints of which developers of enhanced tones should be aware if enhancements are to be successful.
期刊介绍:
AAMI publishes Biomedical Instrumentation & Technology (BI&T) a bi-monthly peer-reviewed journal dedicated to the developers, managers, and users of medical instrumentation and technology.