M. F. Alvarez, Eugenia Levy, R. Poch, M. Osterrieth
{"title":"Edaphic variables conditioning the habitat of oribatid mites in Luvic Phaeozems under forest plantations (Buenos Aires, Argentina)","authors":"M. F. Alvarez, Eugenia Levy, R. Poch, M. Osterrieth","doi":"10.3232/SJSS.2020.V10.N1.01","DOIUrl":null,"url":null,"abstract":"The soil is a complex three-dimensional habitat and any changes in its structure and porosity are likely to affect the type and abundance of soil biota. Oribatid mites play an important role in the decomposition and mineralization of soil organic matter and their abundance depends on diverse soil parameters, including soil texture, organic matter content, pH, moisture, and the pore system. The aim of the present work is to analyze some of the edaphic variables that condition the habitat of oribatid mites in Luvic Phaeozems under Pinus radiata (site P) and Eucalyptus globulus (site E) plantations, in the Southeast of Buenos Aires, Argentina. Bulk density, penetration resistance, pH, moisture, pore system parameters, and oribatid abundance and species composition were analyzed. Site E had a greater total porosity than site P. The high tortuosity of the pores in both sites generates a complex habitat architecture for the development of oribatid mites. In both sites, oribatids of 70-400 μm in size predominated and were more abundant in site E. A positive correlation between the abundance of oribatids and the pore size in both sites was observed. In site E this correlation was lower for 70-600 µm (R = 0.13) or negative for 70-400 µm (R = -0.78). Therefore, the oribatid abundance could be explained by a greater complexity of the structure of the organic horizon, lower bulk density and lower penetration resistance. These conditions favor the mineralization of organic matter, and therefore food availability. On the other hand, in site P, oribatid abundance is mainly influenced by the porous system, which conditions the access to food, competition between organisms and refuge from predators. Two new species were registered for Argentina: Mesotritia elegantula and Acrogalumna longipluma.","PeriodicalId":43464,"journal":{"name":"Spanish Journal of Soil Science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2020-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spanish Journal of Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3232/SJSS.2020.V10.N1.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 1
Abstract
The soil is a complex three-dimensional habitat and any changes in its structure and porosity are likely to affect the type and abundance of soil biota. Oribatid mites play an important role in the decomposition and mineralization of soil organic matter and their abundance depends on diverse soil parameters, including soil texture, organic matter content, pH, moisture, and the pore system. The aim of the present work is to analyze some of the edaphic variables that condition the habitat of oribatid mites in Luvic Phaeozems under Pinus radiata (site P) and Eucalyptus globulus (site E) plantations, in the Southeast of Buenos Aires, Argentina. Bulk density, penetration resistance, pH, moisture, pore system parameters, and oribatid abundance and species composition were analyzed. Site E had a greater total porosity than site P. The high tortuosity of the pores in both sites generates a complex habitat architecture for the development of oribatid mites. In both sites, oribatids of 70-400 μm in size predominated and were more abundant in site E. A positive correlation between the abundance of oribatids and the pore size in both sites was observed. In site E this correlation was lower for 70-600 µm (R = 0.13) or negative for 70-400 µm (R = -0.78). Therefore, the oribatid abundance could be explained by a greater complexity of the structure of the organic horizon, lower bulk density and lower penetration resistance. These conditions favor the mineralization of organic matter, and therefore food availability. On the other hand, in site P, oribatid abundance is mainly influenced by the porous system, which conditions the access to food, competition between organisms and refuge from predators. Two new species were registered for Argentina: Mesotritia elegantula and Acrogalumna longipluma.
期刊介绍:
The Spanish Journal of Soil Science (SJSS) is a peer-reviewed journal with open access for the publication of Soil Science research, which is published every four months. This publication welcomes works from all parts of the world and different geographic areas. It aims to publish original, innovative, and high-quality scientific papers related to field and laboratory research on all basic and applied aspects of Soil Science. The journal is also interested in interdisciplinary studies linked to soil research, short communications presenting new findings and applications, and invited state of art reviews. The journal focuses on all the different areas of Soil Science represented by the Spanish Society of Soil Science: soil genesis, morphology and micromorphology, physics, chemistry, biology, mineralogy, biochemistry and its functions, classification, survey, and soil information systems; soil fertility and plant nutrition, hydrology and geomorphology; soil evaluation and land use planning; soil protection and conservation; soil degradation and remediation; soil quality; soil-plant relationships; soils and land use change; sustainability of ecosystems; soils and environmental quality; methods of soil analysis; pedometrics; new techniques and soil education. Other fields with growing interest include: digital soil mapping, soil nanotechnology, the modelling of biological and biochemical processes, mechanisms and processes responsible for the mobilization and immobilization of nutrients, organic matter stabilization, biogeochemical nutrient cycles, the influence of climatic change on soil processes and soil-plant relationships, carbon sequestration, and the role of soils in climatic change and ecological and environmental processes.