Classification of Remote Sensing Data With Morphological Attribute Profiles: A decade of advances

IF 16.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS IEEE Geoscience and Remote Sensing Magazine Pub Date : 2021-09-01 DOI:10.1109/MGRS.2021.3051859
D. S. Maia, M. Pham, E. Aptoula, Florent Guiotte, S. Lefèvre
{"title":"Classification of Remote Sensing Data With Morphological Attribute Profiles: A decade of advances","authors":"D. S. Maia, M. Pham, E. Aptoula, Florent Guiotte, S. Lefèvre","doi":"10.1109/MGRS.2021.3051859","DOIUrl":null,"url":null,"abstract":"Morphological attribute profiles (APs) are among the most prominent methods for spatial–spectral pixel analysis of remote sensing images. Since their introduction a decade ago to tackle land cover classification, many studies have been contributed to the state of the art, focusing not only on their application to a wider range of tasks but also on their performance improvement and extension to more complex Earth observation data.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"9 1","pages":"43-71"},"PeriodicalIF":16.2000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/MGRS.2021.3051859","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Magazine","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1109/MGRS.2021.3051859","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 7

Abstract

Morphological attribute profiles (APs) are among the most prominent methods for spatial–spectral pixel analysis of remote sensing images. Since their introduction a decade ago to tackle land cover classification, many studies have been contributed to the state of the art, focusing not only on their application to a wider range of tasks but also on their performance improvement and extension to more complex Earth observation data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于形态属性剖面的遥感数据分类:十年进展
形态属性轮廓(APs)是遥感影像空间光谱像元分析的重要方法之一。自十年前引入土地覆盖分类以来,许多研究都对最新技术做出了贡献,不仅关注它们在更广泛任务中的应用,而且关注它们的性能改进和扩展到更复杂的地球观测数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Geoscience and Remote Sensing Magazine
IEEE Geoscience and Remote Sensing Magazine Computer Science-General Computer Science
CiteScore
20.50
自引率
2.70%
发文量
58
期刊介绍: The IEEE Geoscience and Remote Sensing Magazine (GRSM) serves as an informative platform, keeping readers abreast of activities within the IEEE GRS Society, its technical committees, and chapters. In addition to updating readers on society-related news, GRSM plays a crucial role in educating and informing its audience through various channels. These include:Technical Papers,International Remote Sensing Activities,Contributions on Education Activities,Industrial and University Profiles,Conference News,Book Reviews,Calendar of Important Events.
期刊最新文献
ODinMJ: A red, green, blue-thermal dataset for mountain jungle object detection An Integration of Natural Language and Hyperspectral Imaging: A review Opening the Black Box: A systematic review on explainable artificial intelligence in remote sensing Letter From the President [President’s Message] Letter From the President [President’s Message]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1