Thomas Feggeler , Abraham Levitan , Matthew A. Marcus , Hendrik Ohldag , David A. Shapiro
{"title":"Scanning transmission X-ray microscopy at the Advanced Light Source","authors":"Thomas Feggeler , Abraham Levitan , Matthew A. Marcus , Hendrik Ohldag , David A. Shapiro","doi":"10.1016/j.elspec.2023.147381","DOIUrl":null,"url":null,"abstract":"<div><p>Over 50 years of development, synchrotron based X-ray microscopy has become a routine and powerful tool for the analysis of nanoscale structure and chemistry in many areas of science. Scanning X-ray microscopy is particularly well suited to the study of chemical and magnetic states of matter and has become available at most synchrotron light sources using a variety of optical schemes, detectors and sample environments. The Advanced Light Source at Lawrence Berkeley National Laboratory has an extensive program of soft X-ray scanning microscopy which supports a broad range of scientific research using a suite of advanced tools for high spatio-temporal resolution and control of active materials. Instruments operating within an energy range between 200–2500 eV with spatial resolution down to 7 nm and sub 20 picosecond time resolution are available. These capabilities can be routinely used in combination with a variety of sample stimuli, including gas or fluid flow, temperature control from 100 to 1200 K, DC bias and pulsed or continuous microwave excitation. We present here a complete survey of our instruments, their most advanced capabilities and a perspective on how they complement each other to solve complex problems in energy, materials and environmental science.</p></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"267 ","pages":"Article 147381"},"PeriodicalIF":1.8000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electron Spectroscopy and Related Phenomena","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0368204823000981","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Over 50 years of development, synchrotron based X-ray microscopy has become a routine and powerful tool for the analysis of nanoscale structure and chemistry in many areas of science. Scanning X-ray microscopy is particularly well suited to the study of chemical and magnetic states of matter and has become available at most synchrotron light sources using a variety of optical schemes, detectors and sample environments. The Advanced Light Source at Lawrence Berkeley National Laboratory has an extensive program of soft X-ray scanning microscopy which supports a broad range of scientific research using a suite of advanced tools for high spatio-temporal resolution and control of active materials. Instruments operating within an energy range between 200–2500 eV with spatial resolution down to 7 nm and sub 20 picosecond time resolution are available. These capabilities can be routinely used in combination with a variety of sample stimuli, including gas or fluid flow, temperature control from 100 to 1200 K, DC bias and pulsed or continuous microwave excitation. We present here a complete survey of our instruments, their most advanced capabilities and a perspective on how they complement each other to solve complex problems in energy, materials and environmental science.
期刊介绍:
The Journal of Electron Spectroscopy and Related Phenomena publishes experimental, theoretical and applied work in the field of electron spectroscopy and electronic structure, involving techniques which use high energy photons (>10 eV) or electrons as probes or detected particles in the investigation.