On inference and design under progressive type-I interval censoring scheme for inverse Gaussian lifetime model

Soumya Roy, B. Pradhan, Annesha Purakayastha
{"title":"On inference and design under progressive type-I interval censoring scheme for inverse Gaussian lifetime model","authors":"Soumya Roy, B. Pradhan, Annesha Purakayastha","doi":"10.1108/ijqrm-07-2020-0222","DOIUrl":null,"url":null,"abstract":"PurposeThis article considers Inverse Gaussian distribution as the basic lifetime model for the test units. The unknown model parameters are estimated using the method of moments, the method of maximum likelihood and Bayesian methods. As part of maximum likelihood analysis, this article employs an expectation-maximization algorithm to simplify numerical computation. Subsequently, Bayesian estimates are obtained using the Metropolis–Hastings algorithm. This article then presents the design of optimal censoring schemes using a design criterion that deals with the precision of a particular system lifetime quantile. The optimal censoring schemes are obtained after taking into account budget constraints.Design/methodology/approachThis article first presents classical and Bayesian statistical inference for Progressive Type-I Interval censored data. Subsequently, this article considers the design of optimal Progressive Type-I Interval censoring schemes after incorporating budget constraints.FindingsA real dataset is analyzed to demonstrate the methods developed in this article. The adequacy of the lifetime model is ensured using a simulation-based goodness-of-fit test. Furthermore, the performance of various estimators is studied using a detailed simulation experiment. It is observed that the maximum likelihood estimator relatively outperforms the method of moment estimator. Furthermore, the posterior median fares better among Bayesian estimators even in the absence of any subjective information. Furthermore, it is observed that the budget constraints have real implications on the optimal design of censoring schemes.Originality/valueThe proposed methodology may be used for analyzing any Progressive Type-I Interval Censored data for any lifetime model. The methodology adopted to obtain the optimal censoring schemes may be particularly useful for reliability engineers in real-life applications.","PeriodicalId":14193,"journal":{"name":"International Journal of Quality & Reliability Management","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quality & Reliability Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijqrm-07-2020-0222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 1

Abstract

PurposeThis article considers Inverse Gaussian distribution as the basic lifetime model for the test units. The unknown model parameters are estimated using the method of moments, the method of maximum likelihood and Bayesian methods. As part of maximum likelihood analysis, this article employs an expectation-maximization algorithm to simplify numerical computation. Subsequently, Bayesian estimates are obtained using the Metropolis–Hastings algorithm. This article then presents the design of optimal censoring schemes using a design criterion that deals with the precision of a particular system lifetime quantile. The optimal censoring schemes are obtained after taking into account budget constraints.Design/methodology/approachThis article first presents classical and Bayesian statistical inference for Progressive Type-I Interval censored data. Subsequently, this article considers the design of optimal Progressive Type-I Interval censoring schemes after incorporating budget constraints.FindingsA real dataset is analyzed to demonstrate the methods developed in this article. The adequacy of the lifetime model is ensured using a simulation-based goodness-of-fit test. Furthermore, the performance of various estimators is studied using a detailed simulation experiment. It is observed that the maximum likelihood estimator relatively outperforms the method of moment estimator. Furthermore, the posterior median fares better among Bayesian estimators even in the absence of any subjective information. Furthermore, it is observed that the budget constraints have real implications on the optimal design of censoring schemes.Originality/valueThe proposed methodology may be used for analyzing any Progressive Type-I Interval Censored data for any lifetime model. The methodology adopted to obtain the optimal censoring schemes may be particularly useful for reliability engineers in real-life applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
逆高斯寿命模型渐进式i型区间滤波方案的推理与设计
目的将反高斯分布作为试验装置寿命的基本模型。利用矩量法、极大似然法和贝叶斯法对未知模型参数进行了估计。作为极大似然分析的一部分,本文采用期望最大化算法来简化数值计算。然后,利用Metropolis-Hastings算法得到贝叶斯估计。然后,本文介绍了使用处理特定系统寿命分位数精度的设计准则的最佳审查方案的设计。在考虑预算约束的情况下,得到了最优的审查方案。本文首先介绍了渐进式i型区间截尾数据的经典和贝叶斯统计推断。在此基础上,考虑了考虑预算约束后的最优渐进式i型区间滤波方案的设计。本文分析了一个真实数据集,以演示本文开发的方法。使用基于模拟的拟合优度检验来确保寿命模型的充分性。此外,通过详细的仿真实验研究了各种估计器的性能。结果表明,极大似然估计比矩估计要好。此外,即使在没有任何主观信息的情况下,后验中位数在贝叶斯估计中也表现得更好。此外,还观察到预算约束对审查方案的优化设计具有实际意义。原创性/价值提出的方法可用于分析任何寿命模型的任何渐进式i型间隔截尾数据。所采用的方法,以获得最佳的审查方案可能是特别有用的可靠性工程师在实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
12.00%
发文量
53
期刊介绍: In today''s competitive business and industrial environment, it is essential to have an academic journal offering the most current theoretical knowledge on quality and reliability to ensure that top management is fully conversant with new thinking, techniques and developments in the field. The International Journal of Quality & Reliability Management (IJQRM) deals with all aspects of business improvements and with all aspects of manufacturing and services, from the training of (senior) managers, to innovations in organising and processing to raise standards of product and service quality. It is this unique blend of theoretical knowledge and managerial relevance that makes IJQRM a valuable resource for managers striving for higher standards.Coverage includes: -Reliability, availability & maintenance -Gauging, calibration & measurement -Life cycle costing & sustainability -Reliability Management of Systems -Service Quality -Green Marketing -Product liability -Product testing techniques & systems -Quality function deployment -Reliability & quality education & training -Productivity improvement -Performance improvement -(Regulatory) standards for quality & Quality Awards -Statistical process control -System modelling -Teamwork -Quality data & datamining
期刊最新文献
Appraise the role of novelty-seeking on consumers’ satisfaction using online food delivery applications The influence of library service quality, library image, place, personal control and trust on loyalty: the mediating role of perceived service value and satisfaction The impact of quality on health-insurance users' satisfaction in Saudi Arabia: the mediating role of brand image and utilitarian value Proposal of a facilitating methodology for fuzzy FMEA implementation with application in process risk analysis in the aeronautical sector Critical failure factors for Quality 4.0: an exploratory qualitative study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1