UTILE-Gen: Automated Image Analysis in Nanoscience Using Synthetic Dataset Generator and Deep Learning

IF 4.8 Q2 NANOSCIENCE & NANOTECHNOLOGY ACS Nanoscience Au Pub Date : 2023-08-02 DOI:10.1021/acsnanoscienceau.3c00020
André Colliard-Granero*, Jenia Jitsev, Michael H. Eikerling, Kourosh Malek and Mohammad J. Eslamibidgoli*, 
{"title":"UTILE-Gen: Automated Image Analysis in Nanoscience Using Synthetic Dataset Generator and Deep Learning","authors":"André Colliard-Granero*,&nbsp;Jenia Jitsev,&nbsp;Michael H. Eikerling,&nbsp;Kourosh Malek and Mohammad J. Eslamibidgoli*,&nbsp;","doi":"10.1021/acsnanoscienceau.3c00020","DOIUrl":null,"url":null,"abstract":"<p >This work presents the development and implementation of a deep learning-based workflow for autonomous image analysis in nanoscience. A versatile, agnostic, and configurable tool was developed to generate instance-segmented imaging datasets of nanoparticles. The synthetic generator tool employs domain randomization to expand the image/mask pairs dataset for training supervised deep learning models. The approach eliminates tedious manual annotation and allows training of high-performance models for microscopy image analysis based on convolutional neural networks. We demonstrate how the expanded training set can significantly improve the performance of the classification and instance segmentation models for a variety of nanoparticle shapes, ranging from spherical-, cubic-, to rod-shaped nanoparticles. Finally, the trained models were deployed in a cloud-based analytics platform for the autonomous particle analysis of microscopy images.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 5","pages":"398–407"},"PeriodicalIF":4.8000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00020","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.3c00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents the development and implementation of a deep learning-based workflow for autonomous image analysis in nanoscience. A versatile, agnostic, and configurable tool was developed to generate instance-segmented imaging datasets of nanoparticles. The synthetic generator tool employs domain randomization to expand the image/mask pairs dataset for training supervised deep learning models. The approach eliminates tedious manual annotation and allows training of high-performance models for microscopy image analysis based on convolutional neural networks. We demonstrate how the expanded training set can significantly improve the performance of the classification and instance segmentation models for a variety of nanoparticle shapes, ranging from spherical-, cubic-, to rod-shaped nanoparticles. Finally, the trained models were deployed in a cloud-based analytics platform for the autonomous particle analysis of microscopy images.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UTILE Gen:使用合成数据集生成器和深度学习的纳米科学自动图像分析
这项工作提出了基于深度学习的工作流程的开发和实现,用于纳米科学中的自主图像分析。开发了一种通用的、不可知的、可配置的工具来生成纳米颗粒的实例分割成像数据集。的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nanoscience Au
ACS Nanoscience Au 材料科学、纳米科学-
CiteScore
4.20
自引率
0.00%
发文量
0
期刊介绍: ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Synergistic Effects of ZnO@NiM′-Layered Double Hydroxide (M′ = Mn, Co, and Fe) Composites on Supercapacitor Performance: A Comparative Evaluation Crystal Facet Regulation and Ru Incorporation of Co3O4 for Acidic Oxygen Evolution Reaction Electrocatalysis DNA-Mediated Carbon Nanotubes Heterojunction Assembly
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1