A survey on spatial, temporal, and spatio-temporal database research and an original example of relevant applications using SQL ecosystem and deep learning

IF 2.7 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Information and Telecommunication Pub Date : 2020-09-17 DOI:10.1080/24751839.2020.1774153
Kulsawasd Jitkajornwanich, Neelabh Pant, M. Fouladgar, R. Elmasri
{"title":"A survey on spatial, temporal, and spatio-temporal database research and an original example of relevant applications using SQL ecosystem and deep learning","authors":"Kulsawasd Jitkajornwanich, Neelabh Pant, M. Fouladgar, R. Elmasri","doi":"10.1080/24751839.2020.1774153","DOIUrl":null,"url":null,"abstract":"ABSTRACT Spatio-temporal data serves as a foundation for most location-based applications nowadays. To handle spatio-temporal data, an appropriate methodology needs to be properly followed, in which space and time dimensions of data must be taken into account ‘altogether’ – unlike spatial (or temporal) data management tools which consider space (or time) separately and assumes no dependency on one another. In this paper, we conducted a survey on spatial, temporal, and spatio-temporal database research. Additionally, to use an original example to illustrate how today’s technologies can be used to handle spatio-temporal data and applications, we categorize the current technologies into two groups: (1) traditional, mainstay tools (e.g. SQL ecosystem) and (2) emerging, data-intensive tools (e.g. deep learning). Specifically, in the first group, we use our spatio-temporal application based on SQL system, ‘hydrological rainstorm analysis’, as an original example showing how analysis and mining tasks can be performed on the conceptual storm stored in a spatio-temporal RDB. In the second group, we use our spatio-temporal application based on deep learning, ‘users’ future locations prediction based on historical trajectory GPS data using hyper optimized ANNs and LSTMs’, as an original example showing how deep learning models can be applied to spatio-temporal data.","PeriodicalId":32180,"journal":{"name":"Journal of Information and Telecommunication","volume":"4 1","pages":"524 - 559"},"PeriodicalIF":2.7000,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24751839.2020.1774153","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24751839.2020.1774153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 6

Abstract

ABSTRACT Spatio-temporal data serves as a foundation for most location-based applications nowadays. To handle spatio-temporal data, an appropriate methodology needs to be properly followed, in which space and time dimensions of data must be taken into account ‘altogether’ – unlike spatial (or temporal) data management tools which consider space (or time) separately and assumes no dependency on one another. In this paper, we conducted a survey on spatial, temporal, and spatio-temporal database research. Additionally, to use an original example to illustrate how today’s technologies can be used to handle spatio-temporal data and applications, we categorize the current technologies into two groups: (1) traditional, mainstay tools (e.g. SQL ecosystem) and (2) emerging, data-intensive tools (e.g. deep learning). Specifically, in the first group, we use our spatio-temporal application based on SQL system, ‘hydrological rainstorm analysis’, as an original example showing how analysis and mining tasks can be performed on the conceptual storm stored in a spatio-temporal RDB. In the second group, we use our spatio-temporal application based on deep learning, ‘users’ future locations prediction based on historical trajectory GPS data using hyper optimized ANNs and LSTMs’, as an original example showing how deep learning models can be applied to spatio-temporal data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间、时间和时空数据库的研究概况,以及使用SQL生态系统和深度学习的相关应用的原始示例
时空数据是当今大多数基于位置的应用程序的基础。要处理时空数据,需要适当地遵循一种适当的方法,其中必须“全面”考虑数据的空间和时间维度,而不像空间(或时间)数据管理工具单独考虑空间(或时间)并假定彼此不依赖。本文对空间、时间和时空数据库的研究进行了综述。此外,为了用一个原始的例子来说明当今的技术如何用于处理时空数据和应用程序,我们将当前的技术分为两组:(1)传统的主流工具(例如SQL生态系统)和(2)新兴的数据密集型工具(例如深度学习)。具体而言,在第一组中,我们使用基于SQL系统的时空应用程序“水文暴雨分析”作为原始示例,展示了如何对存储在时空RDB中的概念风暴执行分析和挖掘任务。在第二组中,我们使用基于深度学习的时空应用,使用超优化神经网络和lstm作为原始示例,展示了深度学习模型如何应用于时空数据,基于历史轨迹GPS数据的“用户未来位置预测”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
18
审稿时长
27 weeks
期刊最新文献
Utilizing deep learning in chipless RFID tag detection: an investigation on high-precision mm-wave spatial tag estimation from 2D virtual imaging On the performance of outage probability in cognitive NOMA random networks with hardware impairments Relay-assisted communication over a fluctuating two-ray fading channel Modified Caesar Cipher and Card Deck Shuffle Rearrangement Algorithm for Image Encryption Application of data envelopment analysis to IT project evaluation, with special emphasis on the choice of inputs and outputs in the context of the organization in question
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1