KFPA Monocular Ranging Algorithm Design and Application in Mobile edge Computing

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Internet Technology Pub Date : 2021-09-01 DOI:10.53106/160792642021092205016
Shuo Chen, Songzhu Mei, Gangyong Jia, Youhuizi Li, Weihua Zhao
{"title":"KFPA Monocular Ranging Algorithm Design and Application in Mobile edge Computing","authors":"Shuo Chen, Songzhu Mei, Gangyong Jia, Youhuizi Li, Weihua Zhao","doi":"10.53106/160792642021092205016","DOIUrl":null,"url":null,"abstract":"Distance perception is the basis and necessary prerequisite of environment perception, attitude perception and obstacle avoidance for both intelligent vehicle and unmanned vehicle. Passive ranging is a critical part of machine vision measurement. Most passive ranging methods based on machine vision apply binocular technology that needs strict hardware conditions and lacks universality. Therefore, the monocular vision ranging method is one of the mainstream distance sensing methods at present. In order to improve the accuracy of monocular vision ranging, a monocular vision ranging method based on pixel area and aspect ratio is proposed. Subsequently, this method improves the stability of real-time target detection by introducing Kalman filter processing. Experimental results display that that ranging used by this method has higher accuracy. The mean relative error of the depth measurement is 5% when it is 3-10 m. After introducing Kalman filter, the stability of real-time ranging processing is improved by 25.21%. In this paper, the ROS smart car with real-time target tracking is also realized by the method based on the combination of SIFT-KCF target detection and tracking and monocular ranging.","PeriodicalId":50172,"journal":{"name":"Journal of Internet Technology","volume":"22 1","pages":"1129-1140"},"PeriodicalIF":0.9000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.53106/160792642021092205016","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

Distance perception is the basis and necessary prerequisite of environment perception, attitude perception and obstacle avoidance for both intelligent vehicle and unmanned vehicle. Passive ranging is a critical part of machine vision measurement. Most passive ranging methods based on machine vision apply binocular technology that needs strict hardware conditions and lacks universality. Therefore, the monocular vision ranging method is one of the mainstream distance sensing methods at present. In order to improve the accuracy of monocular vision ranging, a monocular vision ranging method based on pixel area and aspect ratio is proposed. Subsequently, this method improves the stability of real-time target detection by introducing Kalman filter processing. Experimental results display that that ranging used by this method has higher accuracy. The mean relative error of the depth measurement is 5% when it is 3-10 m. After introducing Kalman filter, the stability of real-time ranging processing is improved by 25.21%. In this paper, the ROS smart car with real-time target tracking is also realized by the method based on the combination of SIFT-KCF target detection and tracking and monocular ranging.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
KFPA单目测距算法设计及在移动边缘计算中的应用
无论是智能车还是无人车,距离感知都是环境感知、姿态感知和避障的基础和必要前提。被动测距是机器视觉测量的重要组成部分。基于机器视觉的被动测距方法大多采用双目技术,对硬件条件要求严格,缺乏通用性。因此,单目视觉测距方法是目前主流的测距方法之一。为了提高单目视觉测距的精度,提出了一种基于像素面积和纵横比的单目视觉定位方法。随后,该方法通过引入卡尔曼滤波处理来提高实时目标检测的稳定性。实验结果表明,该方法测距精度较高。深度测量在3-10m时的平均相对误差为5%。引入卡尔曼滤波器后,实时测距处理的稳定性提高了25.21%。本文还采用了基于SIFT-KCF目标检测跟踪和单目测距相结合的方法,实现了具有实时目标跟踪的ROS智能车。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Internet Technology
Journal of Internet Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
3.20
自引率
18.80%
发文量
112
审稿时长
13.8 months
期刊介绍: The Journal of Internet Technology accepts original technical articles in all disciplines of Internet Technology & Applications. Manuscripts are submitted for review with the understanding that they have not been published elsewhere. Topics of interest to JIT include but not limited to: Broadband Networks Electronic service systems (Internet, Intranet, Extranet, E-Commerce, E-Business) Network Management Network Operating System (NOS) Intelligent systems engineering Government or Staff Jobs Computerization National Information Policy Multimedia systems Network Behavior Modeling Wireless/Satellite Communication Digital Library Distance Learning Internet/WWW Applications Telecommunication Networks Security in Networks and Systems Cloud Computing Internet of Things (IoT) IPv6 related topics are especially welcome.
期刊最新文献
Abnormal Detection Method of Transship Based on Marine Target Spatio-Temporal Data Multidimensional Concept Map Representation of the Learning Objects Ontology Model for Personalized Learning Multiscale Convolutional Attention-based Residual Network Expression Recognition A Dynamic Access Control Scheme with Conditional Anonymity in Socio-Meteorological Observation A Behaviorally Evidence-based Method for Computing Spatial Comparisons of Image Scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1