Ahmed Nematallah;Chang Hyun Park;David Black-Schaffer
{"title":"Exploring the Latency Sensitivity of Cache Replacement Policies","authors":"Ahmed Nematallah;Chang Hyun Park;David Black-Schaffer","doi":"10.1109/LCA.2023.3296251","DOIUrl":null,"url":null,"abstract":"With DRAM latencies increasing relative to CPU speeds, the performance of caches has become more important. This has led to increasingly sophisticated replacement policies that require complex calculations to update their replacement metadata, which often require multiple cycles. To minimize the negative impact of these metadata updates, architects have focused on policies that incur as little update latency as possible through a combination of reducing the policies’ precision and using parallel hardware. In this work we investigate whether these tradeoffs to reduce cache metadata update latency are needed. Specifically, we look at the performance and energy impact of increasing the latency of cache replacement policy updates. We find that even dramatic increases in replacement policy update latency have very limited effect. This indicates that designers have far more freedom to increase policy complexity and latency than previously assumed.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"22 2","pages":"93-96"},"PeriodicalIF":1.4000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10187184/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
With DRAM latencies increasing relative to CPU speeds, the performance of caches has become more important. This has led to increasingly sophisticated replacement policies that require complex calculations to update their replacement metadata, which often require multiple cycles. To minimize the negative impact of these metadata updates, architects have focused on policies that incur as little update latency as possible through a combination of reducing the policies’ precision and using parallel hardware. In this work we investigate whether these tradeoffs to reduce cache metadata update latency are needed. Specifically, we look at the performance and energy impact of increasing the latency of cache replacement policy updates. We find that even dramatic increases in replacement policy update latency have very limited effect. This indicates that designers have far more freedom to increase policy complexity and latency than previously assumed.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.