Federated learning algorithm based on matrix mapping for data privacy over edge computing

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Pervasive Computing and Communications Pub Date : 2022-07-14 DOI:10.1108/ijpcc-03-2022-0113
P. Tripathy, Anurag Shrivastava, Varsha Agarwal, Devangkumar Umakant Shah, C. L, S. .. Akilandeeswari
{"title":"Federated learning algorithm based on matrix mapping for data privacy over edge computing","authors":"P. Tripathy, Anurag Shrivastava, Varsha Agarwal, Devangkumar Umakant Shah, C. L, S. .. Akilandeeswari","doi":"10.1108/ijpcc-03-2022-0113","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to provide the security and privacy for Byzantine clients from different types of attacks.\n\n\nDesign/methodology/approach\nIn this paper, the authors use Federated Learning Algorithm Based On Matrix Mapping For Data Privacy over Edge Computing.\n\n\nFindings\nBy using Softmax layer probability distribution for model byzantine tolerance can be increased from 40% to 45% in the blocking-convergence attack, and the edge backdoor attack can be stopped.\n\n\nOriginality/value\nBy using Softmax layer probability distribution for model the results of the tests, the aggregation method can protect at least 30% of Byzantine clients.\n","PeriodicalId":43952,"journal":{"name":"International Journal of Pervasive Computing and Communications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pervasive Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijpcc-03-2022-0113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

Purpose This paper aims to provide the security and privacy for Byzantine clients from different types of attacks. Design/methodology/approach In this paper, the authors use Federated Learning Algorithm Based On Matrix Mapping For Data Privacy over Edge Computing. Findings By using Softmax layer probability distribution for model byzantine tolerance can be increased from 40% to 45% in the blocking-convergence attack, and the edge backdoor attack can be stopped. Originality/value By using Softmax layer probability distribution for model the results of the tests, the aggregation method can protect at least 30% of Byzantine clients.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于矩阵映射的边缘计算数据隐私联合学习算法
目的本文旨在为拜占庭客户端提供不同类型攻击的安全性和隐私性。设计/方法论/方法在本文中,作者使用基于矩阵映射的联合学习算法来保护边缘计算上的数据隐私。通过使用Softmax层概率分布,模型拜占庭容忍度可以在阻塞收敛攻击中从40%提高到45%,并且可以阻止边缘后门攻击。独创性/价值通过使用Softmax层概率分布对测试结果进行建模,聚合方法可以保护至少30%的拜占庭客户端。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Pervasive Computing and Communications
International Journal of Pervasive Computing and Communications COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
6.60
自引率
0.00%
发文量
54
期刊最新文献
Big data challenges and opportunities in Internet of Vehicles: a systematic review Cooperative optimization techniques in distributed MAC protocols – a survey Novel communication system for buried water pipe monitoring using acoustic signal propagation along the pipe A new predictive approach for the MAC layer misbehavior in IEEE 802.11 networks Clustering based EO with MRF technique for effective load balancing in cloud computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1