{"title":"Iterative Soft-Input Soft-Output Bit-Level Reed-Solomon Decoder Based on Information Set Decoding","authors":"Yuval Genga;Olutayo O. Oyerinde;Jaco Versfeld","doi":"10.23919/SAIEE.2021.9432893","DOIUrl":null,"url":null,"abstract":"In this paper, a bit-level decoder is presented for soft-input soft-output iterative decoding of Reed-Solomon (RS) codes. The main aim for the development of the proposed algorithm is to reduce the complexity of the decoding process, while yielding a relatively good error correction performance, for the efficient use of RS codes. The decoder utilises information set decoding techniques to reduce the computational complexity cost by lowering the iterative convergence rate during the decoding process. As opposed to most iterative bit-level soft-decision decoders for RS codes, the proposed algorithm is also able to avoid the use of belief propagation in the iterative decoding of the soft bit information, which also contributes to the reduction in the computational complexity cost of the decoding process. The performance of the proposed decoder is investigated when applied to short RS codes. The error correction simulations show the proposed algorithm is able to yield a similar performance to that of the Adaptive Belief Propagation (ABP) algorithm, while being a less complex decoder.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.23919/SAIEE.2021.9432893","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9432893/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, a bit-level decoder is presented for soft-input soft-output iterative decoding of Reed-Solomon (RS) codes. The main aim for the development of the proposed algorithm is to reduce the complexity of the decoding process, while yielding a relatively good error correction performance, for the efficient use of RS codes. The decoder utilises information set decoding techniques to reduce the computational complexity cost by lowering the iterative convergence rate during the decoding process. As opposed to most iterative bit-level soft-decision decoders for RS codes, the proposed algorithm is also able to avoid the use of belief propagation in the iterative decoding of the soft bit information, which also contributes to the reduction in the computational complexity cost of the decoding process. The performance of the proposed decoder is investigated when applied to short RS codes. The error correction simulations show the proposed algorithm is able to yield a similar performance to that of the Adaptive Belief Propagation (ABP) algorithm, while being a less complex decoder.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.