{"title":"Unified inflation and dark energy with accelerated particle holographic model","authors":"H. R. Fazlollahi","doi":"10.1140/epjc/s10052-023-11896-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper and in the follows of the holographic approach to describe the primary acceleration and the late-time acceleration eras, we have considered and unified inflation and dark energy while accelerated particle holographic (APHM) density is used (Fazlollahi in Chin Phys C 47:035101, 2023). As discussed, establishing holographic model for constant roll inflation during the very early Universe leads one to explicit form of Hubble parameter which satisfies inflationary era. The validity of such holographic constant roll inflation with respect to the Planck data puts a certain bound on the infrared cut-off at the time of horizon crossing. Beside the mere inflation, the Hubble parameter gives explicit form for density of accelerated particle holographic model. It is shown such density due to inflationary bound condition on infrared cut-off could present late-time acceleration epoch. Consequently, inflation and late time expansion era unified in unique infrared cut-off model. Moreover, such corresponding fractional density gives more matter regimes during matter era. Nevertheless, studying matter structure formation during matter era reveals the model is not in conflict with <span>\\({\\Lambda }\\)</span>CDM model.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11896-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-023-11896-y","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper and in the follows of the holographic approach to describe the primary acceleration and the late-time acceleration eras, we have considered and unified inflation and dark energy while accelerated particle holographic (APHM) density is used (Fazlollahi in Chin Phys C 47:035101, 2023). As discussed, establishing holographic model for constant roll inflation during the very early Universe leads one to explicit form of Hubble parameter which satisfies inflationary era. The validity of such holographic constant roll inflation with respect to the Planck data puts a certain bound on the infrared cut-off at the time of horizon crossing. Beside the mere inflation, the Hubble parameter gives explicit form for density of accelerated particle holographic model. It is shown such density due to inflationary bound condition on infrared cut-off could present late-time acceleration epoch. Consequently, inflation and late time expansion era unified in unique infrared cut-off model. Moreover, such corresponding fractional density gives more matter regimes during matter era. Nevertheless, studying matter structure formation during matter era reveals the model is not in conflict with \({\Lambda }\)CDM model.
在本文及后续描述主加速和晚时间加速时代的全息方法中,我们考虑并统一了暴胀和暗能量,同时使用了加速粒子全息(APHM)密度(Fazlollahi In Chin Phys C 47:035101, 2023)。如前所述,建立宇宙早期恒定滚动暴胀的全息模型可以得到满足暴胀时代的哈勃参数的明确形式。相对于普朗克数据,这种全息恒定滚动膨胀的有效性对视界穿越时的红外截止点有一定的限制。除了单纯的膨胀外,哈勃参数给出了加速粒子密度全息模型的显式形式。结果表明,由于红外截止点的膨胀约束条件,这样的密度可以出现晚时间的加速纪元。因此,暴胀和晚时间膨胀时代统一在一个独特的红外截止模型中。此外,这种相应的分数密度在物质时代给出了更多的物质状态。然而,对物质时代物质结构形成的研究表明,该模型与\({\Lambda }\) CDM模型并不冲突。
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.