Evolution of the stress and strain field in the tyra field during the Post-Chalk Deposition and seismic inversion of fault zone using informed-proposal Monte Carlo

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2022-06-01 DOI:10.1016/j.acags.2022.100085
Sarouyeh Khoshkholgh, Ivanka Orozova-Bekkevold, Klaus Mosegaard
{"title":"Evolution of the stress and strain field in the tyra field during the Post-Chalk Deposition and seismic inversion of fault zone using informed-proposal Monte Carlo","authors":"Sarouyeh Khoshkholgh,&nbsp;Ivanka Orozova-Bekkevold,&nbsp;Klaus Mosegaard","doi":"10.1016/j.acags.2022.100085","DOIUrl":null,"url":null,"abstract":"<div><p>When hydrocarbon reservoirs are used as a CO2 storage facility, an accurate uncertainty analysis and risk assessment is essential. An integration of information from geological knowledge, geological modelling, well log data, and geophysical data provides the basis for this analysis. Modelling the time development of stress/strain changes in the overburden provides prior knowledge about fault and fracture probability in the reservoir, which in turn is used in seismic inversion to constrain models of faulting and fracturing. One main problem in solving large scale seismic inverse problems is high computational cost and inefficiency. We use a newly introduced methodology - Informed-proposal Monte Carlo (IPMC) - to deal with this problem, and to carry out a conceptual study based on real data from the Danish North Sea. The result outlines a methodology for evaluating the risk of having sub-seismic faulting in the overburden that potentially compromises the CO2 storage of the reservoir.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"14 ","pages":"Article 100085"},"PeriodicalIF":2.6000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590197422000076/pdfft?md5=f2aeb16d5a833110a0c3e557c58c7ab4&pid=1-s2.0-S2590197422000076-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197422000076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

When hydrocarbon reservoirs are used as a CO2 storage facility, an accurate uncertainty analysis and risk assessment is essential. An integration of information from geological knowledge, geological modelling, well log data, and geophysical data provides the basis for this analysis. Modelling the time development of stress/strain changes in the overburden provides prior knowledge about fault and fracture probability in the reservoir, which in turn is used in seismic inversion to constrain models of faulting and fracturing. One main problem in solving large scale seismic inverse problems is high computational cost and inefficiency. We use a newly introduced methodology - Informed-proposal Monte Carlo (IPMC) - to deal with this problem, and to carry out a conceptual study based on real data from the Danish North Sea. The result outlines a methodology for evaluating the risk of having sub-seismic faulting in the overburden that potentially compromises the CO2 storage of the reservoir.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
白垩后沉积期tyra场应力场演化及断裂带信息建议蒙特卡罗地震反演
当油气储层被用作二氧化碳储存设施时,准确的不确定性分析和风险评估至关重要。地质知识、地质建模、测井数据和地球物理数据的综合信息为这一分析提供了基础。对覆盖层应力/应变变化的时间发展进行建模,可以提供有关储层断层和裂缝概率的先验知识,进而用于地震反演,以约束断层和压裂模型。求解大规模地震反演问题的一个主要问题是计算成本高、效率低。我们使用了一种新引入的方法——知情建议蒙特卡罗(IPMC)来处理这个问题,并根据丹麦北海的实际数据进行了概念性研究。该结果概述了一种评估上覆层中存在亚地震断层的风险的方法,这种断层可能会损害储层的二氧化碳储存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
Revolutionizing the future of hydrological science: Impact of machine learning and deep learning amidst emerging explainable AI and transfer learning Generating land gravity anomalies from satellite gravity observations using PIX2PIX GAN image translation Reconstruction of reservoir rock using attention-based convolutional recurrent neural network Mapping landforms of a hilly landscape using machine learning and high-resolution LiDAR topographic data Evaluating the performances of SVR and XGBoost for short-range forecasting of heatwaves across different temperature zones of India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1