Research on residual life prediction method of lithium ion battery for pure electric vehicle

IF 0.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Materials & Product Technology Pub Date : 2021-08-02 DOI:10.1504/ijmpt.2021.10039891
Zhiwen An
{"title":"Research on residual life prediction method of lithium ion battery for pure electric vehicle","authors":"Zhiwen An","doi":"10.1504/ijmpt.2021.10039891","DOIUrl":null,"url":null,"abstract":"To overcome the complexity of the lithium-ion battery inside the chemical reaction resulting in a low battery life remaining prediction accuracy, the paper proposes a new electric vehicle lithium ion battery remaining life prediction method based on a correlation vector machine. According to the operating characteristics of lithium-ion batteries in electric vehicles, this method selects health factors that affect battery life, and selects related factors. According to the marginal likelihood function, the factor weights are integrated to obtain the health factor sequence target. Relevance vector machine is used to optimise and evaluate the characteristics of health factors, and complete the prediction of electric vehicle lithium-ion battery capacity and remaining battery life. Comparative experiments show that the prediction effect and stability of the method in this paper are better, and the minimum prediction error is only 0.013.","PeriodicalId":14167,"journal":{"name":"International Journal of Materials & Product Technology","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials & Product Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1504/ijmpt.2021.10039891","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

To overcome the complexity of the lithium-ion battery inside the chemical reaction resulting in a low battery life remaining prediction accuracy, the paper proposes a new electric vehicle lithium ion battery remaining life prediction method based on a correlation vector machine. According to the operating characteristics of lithium-ion batteries in electric vehicles, this method selects health factors that affect battery life, and selects related factors. According to the marginal likelihood function, the factor weights are integrated to obtain the health factor sequence target. Relevance vector machine is used to optimise and evaluate the characteristics of health factors, and complete the prediction of electric vehicle lithium-ion battery capacity and remaining battery life. Comparative experiments show that the prediction effect and stability of the method in this paper are better, and the minimum prediction error is only 0.013.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纯电动汽车锂离子电池剩余寿命预测方法研究
为了克服锂离子电池内部化学反应的复杂性导致电池剩余寿命预测精度低的问题,本文提出了一种新的基于相关向量机的电动汽车锂离子电池剩余寿命预测方法。该方法根据电动汽车中锂离子电池的工作特点,选取影响电池寿命的健康因素,并选取相关因素。根据边际似然函数,对各因子权重进行积分,得到健康因子序列目标。利用相关向量机对健康因素特征进行优化评估,完成对电动汽车锂离子电池容量和剩余电池寿命的预测。对比实验表明,本文方法的预测效果和稳定性较好,最小预测误差仅为0.013。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Materials & Product Technology
International Journal of Materials & Product Technology 工程技术-材料科学:综合
CiteScore
0.80
自引率
0.00%
发文量
61
审稿时长
8 months
期刊介绍: The IJMPT is a refereed and authoritative publication which provides a forum for the exchange of information and ideas between materials academics and engineers working in university research departments and research institutes, and manufacturing, marketing and process managers, designers, technologists and research and development engineers working in industry.
期刊最新文献
The different electroplastic effects of cutting directions during the turning process of Ti-6Al-4V titanium alloy Optimisation of low-weight cargo UAV with real-time controller by CAD design, FEM simulation and dynamic modelling Tribological performance of various blends of commercial SAE 40 oil and novel apricot oil-based bio-lubricant using a four-ball tester tribometer Environmental protection evaluation of new inorganic non-metallic building materials based on principal component analysis Bayesian based durability life prediction method of nano-modified concrete
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1