A nonlinear optimal control approach for the UAV and suspended payload system

Q3 Physics and Astronomy Cybernetics and Physics Pub Date : 2021-06-30 DOI:10.35470/2226-4116-2021-10-1-27-39
G. Rigatos
{"title":"A nonlinear optimal control approach for the UAV and suspended payload system","authors":"G. Rigatos","doi":"10.35470/2226-4116-2021-10-1-27-39","DOIUrl":null,"url":null,"abstract":"The article proposes a nonlinear optimal control approach for the UAV and suspended load system. The dynamic model of the UAV and payload system undergoes approximate linearization with the use of Taylor series expansion around a temporary operating point which recomputed at each iteration of the control method. For the approximately linearized model an H-infinity feedback controller is designed. The linearization procedure relies on the computation of the Jacobian matrices of the state-space model of the system. The proposed control method stands for the solution of the optimal control problem for the nonlinear and multivariable dynamics of the UAV and payload system, under model uncertainties and external perturbations. For the computation of the controller’s feedback gains an algebraic Riccati equation is solved at each time-step of the control method. The new nonlinear optimal control approach achieves fast and accurate tracking for all state variables of the UAV and payload system, under moderate variations of the control inputs. The stability properties of the control scheme are proven through Lyapunov analysis.","PeriodicalId":37674,"journal":{"name":"Cybernetics and Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35470/2226-4116-2021-10-1-27-39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 3

Abstract

The article proposes a nonlinear optimal control approach for the UAV and suspended load system. The dynamic model of the UAV and payload system undergoes approximate linearization with the use of Taylor series expansion around a temporary operating point which recomputed at each iteration of the control method. For the approximately linearized model an H-infinity feedback controller is designed. The linearization procedure relies on the computation of the Jacobian matrices of the state-space model of the system. The proposed control method stands for the solution of the optimal control problem for the nonlinear and multivariable dynamics of the UAV and payload system, under model uncertainties and external perturbations. For the computation of the controller’s feedback gains an algebraic Riccati equation is solved at each time-step of the control method. The new nonlinear optimal control approach achieves fast and accurate tracking for all state variables of the UAV and payload system, under moderate variations of the control inputs. The stability properties of the control scheme are proven through Lyapunov analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种无人机与有效载荷系统的非线性最优控制方法
本文提出了一种无人机和悬吊系统的非线性最优控制方法。无人机和有效载荷系统的动态模型在临时操作点周围使用泰勒级数展开进行近似线性化,该临时操作点在控制方法的每次迭代中重新计算。对于近似线性化的模型,设计了一个H-无穷大反馈控制器。线性化过程依赖于系统状态空间模型的雅可比矩阵的计算。所提出的控制方法代表了无人机和有效载荷系统在模型不确定性和外部扰动下的非线性和多变量动力学的最优控制问题的求解。为了计算控制器的反馈增益,在控制方法的每个时间步长求解代数Riccati方程。新的非线性最优控制方法在控制输入的适度变化下,实现了对无人机和有效载荷系统所有状态变量的快速准确跟踪。通过李雅普诺夫分析证明了该控制方案的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cybernetics and Physics
Cybernetics and Physics Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
1.70
自引率
0.00%
发文量
17
审稿时长
10 weeks
期刊介绍: The scope of the journal includes: -Nonlinear dynamics and control -Complexity and self-organization -Control of oscillations -Control of chaos and bifurcations -Control in thermodynamics -Control of flows and turbulence -Information Physics -Cyber-physical systems -Modeling and identification of physical systems -Quantum information and control -Analysis and control of complex networks -Synchronization of systems and networks -Control of mechanical and micromechanical systems -Dynamics and control of plasma, beams, lasers, nanostructures -Applications of cybernetic methods in chemistry, biology, other natural sciences The papers in cybernetics with physical flavor as well as the papers in physics with cybernetic flavor are welcome. Cybernetics is assumed to include, in addition to control, such areas as estimation, filtering, optimization, identification, information theory, pattern recognition and other related areas.
期刊最新文献
Enhancing functionality of two-rotor vibration machine by automatic control Adaptive exchange protocol for multi-agent communication in augmented reality system Feasibility study of permanent magnet dipoles for SILA facility Digital control of the synchronous modes of the two-rotor vibration set-up Suitability of different machine learning methods for high-speed flow modeling issues
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1