{"title":"An in vitro model of region-specific rib formation in chick axial skeleton: Intercellular interaction between somite and lateral plate cells","authors":"Kaoru Matsutani , Koji Ikegami , Hirohiko Aoyama","doi":"10.1016/j.mod.2019.103568","DOIUrl":null,"url":null,"abstract":"<div><p>The axial skeleton is divided into different regions based on its morphological features. In particular, in birds and mammals, ribs are present only in the thoracic region. The axial skeleton is derived from a series of somites. In the thoracic region of the axial skeleton, descendants of somites coherently penetrate into the somatic mesoderm to form ribs. In regions other than the thoracic, descendants of somites do not penetrate the somatic lateral plate mesoderm. We performed live-cell time-lapse imaging to investigate the difference in the migration of a somite cell after contact with the somatic lateral plate mesoderm obtained from different regions of anterior–posterior axis in vitro on cytophilic narrow paths. We found that a thoracic somite cell continues to migrate after contact with the thoracic somatic lateral plate mesoderm, whereas it ceases migration after contact with the lumbar somatic lateral plate mesoderm. This suggests that cell–cell interaction works as an important guidance cue that regulates migration of somite cells. We surmise that the thoracic somatic lateral plate mesoderm exhibits region-specific competence to allow penetration of somite cells, whereas the lumbosacral somatic lateral plate mesoderm repels somite cells by contact inhibition of locomotion. The differences in the behavior of the somatic lateral plate mesoderm toward somite cells may confirm the distinction between different regions of the axial skeleton.</p></div>","PeriodicalId":49844,"journal":{"name":"Mechanisms of Development","volume":"159 ","pages":"Article 103568"},"PeriodicalIF":2.6000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mod.2019.103568","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanisms of Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925477319301248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1
Abstract
The axial skeleton is divided into different regions based on its morphological features. In particular, in birds and mammals, ribs are present only in the thoracic region. The axial skeleton is derived from a series of somites. In the thoracic region of the axial skeleton, descendants of somites coherently penetrate into the somatic mesoderm to form ribs. In regions other than the thoracic, descendants of somites do not penetrate the somatic lateral plate mesoderm. We performed live-cell time-lapse imaging to investigate the difference in the migration of a somite cell after contact with the somatic lateral plate mesoderm obtained from different regions of anterior–posterior axis in vitro on cytophilic narrow paths. We found that a thoracic somite cell continues to migrate after contact with the thoracic somatic lateral plate mesoderm, whereas it ceases migration after contact with the lumbar somatic lateral plate mesoderm. This suggests that cell–cell interaction works as an important guidance cue that regulates migration of somite cells. We surmise that the thoracic somatic lateral plate mesoderm exhibits region-specific competence to allow penetration of somite cells, whereas the lumbosacral somatic lateral plate mesoderm repels somite cells by contact inhibition of locomotion. The differences in the behavior of the somatic lateral plate mesoderm toward somite cells may confirm the distinction between different regions of the axial skeleton.
期刊介绍:
Mechanisms of Development is an international journal covering the areas of cell biology and developmental biology. In addition to publishing work at the interphase of these two disciplines, we also publish work that is purely cell biology as well as classical developmental biology.
Mechanisms of Development will consider papers in any area of cell biology or developmental biology, in any model system like animals and plants, using a variety of approaches, such as cellular, biomechanical, molecular, quantitative, computational and theoretical biology.
Areas of particular interest include:
Cell and tissue morphogenesis
Cell adhesion and migration
Cell shape and polarity
Biomechanics
Theoretical modelling of cell and developmental biology
Quantitative biology
Stem cell biology
Cell differentiation
Cell proliferation and cell death
Evo-Devo
Membrane traffic
Metabolic regulation
Organ and organoid development
Regeneration
Mechanisms of Development does not publish descriptive studies of gene expression patterns and molecular screens; for submission of such studies see Gene Expression Patterns.