{"title":"Spatial localization of hotspots in Fano-resonant plasmonic oligomers for surface-enhanced coherent anti-Stokes Raman scattering","authors":"Arpan Dutta, Erik M. Vartiainen","doi":"10.1186/s41476-020-00128-5","DOIUrl":null,"url":null,"abstract":"<p>Realization of Fano resonance in plasmonic oligomers is often exploited to design efficient plasmonic substrates for surface-enhanced coherent anti-Stokes Raman scattering. Disk-type Fano-resonant plasmonic oligomers are widely used to enhance the Raman signal of the probe material. Generally, hot spots are generated in those oligomers at different spatial locations at different wavelengths and only a few spatially overlapping hot spots at multiple wavelengths can be achieved with oblique incidence of excitation light. In this work, we proposed hexagonal gold nanoparticle based Fano-resonant plasmonic oligomers that can yield higher number of spatially overlapped hot spots compared to the disk type oligomers even with the normal incidence of excitation light. The oligomers were numerically modelled and optimized for surface-enhanced coherent anti-Stokes Raman scattering with 780?nm pumping and 500–1800?cm<sup>??1</sup> Raman signature region. The Fano lineshape was engineered to ensure near-field energy coupling at pump while enhancing the coherent anti-Stokes Raman signal at the far field. Our computational studies explored the purely electric origin of Fano resonance in those oligomers and provided maximum Raman enhancements of 10<sup>12</sup>–10<sup>13</sup> from them to enable single-molecular level applications. Our findings provide a way to realize fabrication-friendly nanostructures with higher number of spatially localized hotspots for improving the Raman detection sensitivity.</p>","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":"16 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2020-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s41476-020-00128-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 5
Abstract
Realization of Fano resonance in plasmonic oligomers is often exploited to design efficient plasmonic substrates for surface-enhanced coherent anti-Stokes Raman scattering. Disk-type Fano-resonant plasmonic oligomers are widely used to enhance the Raman signal of the probe material. Generally, hot spots are generated in those oligomers at different spatial locations at different wavelengths and only a few spatially overlapping hot spots at multiple wavelengths can be achieved with oblique incidence of excitation light. In this work, we proposed hexagonal gold nanoparticle based Fano-resonant plasmonic oligomers that can yield higher number of spatially overlapped hot spots compared to the disk type oligomers even with the normal incidence of excitation light. The oligomers were numerically modelled and optimized for surface-enhanced coherent anti-Stokes Raman scattering with 780?nm pumping and 500–1800?cm??1 Raman signature region. The Fano lineshape was engineered to ensure near-field energy coupling at pump while enhancing the coherent anti-Stokes Raman signal at the far field. Our computational studies explored the purely electric origin of Fano resonance in those oligomers and provided maximum Raman enhancements of 1012–1013 from them to enable single-molecular level applications. Our findings provide a way to realize fabrication-friendly nanostructures with higher number of spatially localized hotspots for improving the Raman detection sensitivity.
期刊介绍:
Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry.
Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research.
The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics.
The journal covers both fundamental and applied topics, including but not limited to:
Classical and quantum optics
Light/matter interaction
Optical communication
Micro- and nanooptics
Nonlinear optical phenomena
Optical materials
Optical metrology
Optical spectroscopy
Colour research
Nano and metamaterials
Modern photonics technology
Optical engineering, design and instrumentation
Optical applications in bio-physics and medicine
Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage
The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.