{"title":"LAA: a project using dedicated funding to develop technology for high-energy physics experiments","authors":"Thomas Taylor, Horst Wenninger, Antonino Zichichi","doi":"10.1140/epjh/e2019-100010-9","DOIUrl":null,"url":null,"abstract":"<p>\nIn the mid-1980s, the cost of investment in infrastructure for particle accelerators and colliders at the highest energy had risen to such level that the host laboratory (CERN) could no longer afford the cost of development of new detector technology required for the experiments. Large particle colliders were identified by the tools of the future for high-energy physics research, and a long-term view of their development was already conjured up in the late 1970s. It was based on this appraisal that a separate project, called LAA, which addresses the development of the technologies that are required to fully exploit the potential of the new infrastructure, was conceived. The project, specifically funded by the Italian government, centers on advanced microelectronics, and it is largely thanks to this development that the experiments at the large hadron collider (LHC) at CERN were equipped with performant detectors. Some of this equipment features in (i) the Italian School project to observe Extreme Energy Events (EEE), (ii) the Alpha Magnetic Spectrometer (AMS) experiment in the International Space Station and (iii) the time-of-flight (TOF) detector of the LHC heavy ion experiment ALICE at CERN. Several spin-offs for applications in medical instrumentation and advanced electronics were also initiated by development in the framework of the LAA project. The project also covers development work on superconductors and high field superconducting magnets for a future very LHC. The impact of LAA on technology is widely acknowledged.\n</p>","PeriodicalId":791,"journal":{"name":"The European Physical Journal H","volume":"44 4-5","pages":"307 - 319"},"PeriodicalIF":0.8000,"publicationDate":"2019-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1140/epjh/e2019-100010-9","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal H","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjh/e2019-100010-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 1
Abstract
In the mid-1980s, the cost of investment in infrastructure for particle accelerators and colliders at the highest energy had risen to such level that the host laboratory (CERN) could no longer afford the cost of development of new detector technology required for the experiments. Large particle colliders were identified by the tools of the future for high-energy physics research, and a long-term view of their development was already conjured up in the late 1970s. It was based on this appraisal that a separate project, called LAA, which addresses the development of the technologies that are required to fully exploit the potential of the new infrastructure, was conceived. The project, specifically funded by the Italian government, centers on advanced microelectronics, and it is largely thanks to this development that the experiments at the large hadron collider (LHC) at CERN were equipped with performant detectors. Some of this equipment features in (i) the Italian School project to observe Extreme Energy Events (EEE), (ii) the Alpha Magnetic Spectrometer (AMS) experiment in the International Space Station and (iii) the time-of-flight (TOF) detector of the LHC heavy ion experiment ALICE at CERN. Several spin-offs for applications in medical instrumentation and advanced electronics were also initiated by development in the framework of the LAA project. The project also covers development work on superconductors and high field superconducting magnets for a future very LHC. The impact of LAA on technology is widely acknowledged.
期刊介绍:
The purpose of this journal is to catalyse, foster, and disseminate an awareness and understanding of the historical development of ideas in contemporary physics, and more generally, ideas about how Nature works.
The scope explicitly includes:
- Contributions addressing the history of physics and of physical ideas and concepts, the interplay of physics and mathematics as well as the natural sciences, and the history and philosophy of sciences, together with discussions of experimental ideas and designs - inasmuch as they clearly relate, and preferably add, to the understanding of modern physics.
- Annotated and/or contextual translations of relevant foreign-language texts.
- Careful characterisations of old and/or abandoned ideas including past mistakes and false leads, thereby helping working physicists to assess how compelling contemporary ideas may turn out to be in future, i.e. with hindsight.