{"title":"An Algorithm to Find Ribbon Disks for Alternating Knots","authors":"Brendan Owens, Frank Swenton","doi":"10.1080/10586458.2022.2158968","DOIUrl":null,"url":null,"abstract":"We describe an algorithm to find ribbon disks for alternating knots, and the results of a computer implementation of this algorithm. The algorithm is underlain by a slice link obstruction coming from Donaldson's diagonalisation theorem. It successfully finds ribbon disks for slice two-bridge knots and for the connected sum of any alternating knot with its reverse mirror, as well as for 662,903 prime alternating knots of 21 or fewer crossings. We also identify some examples of ribbon alternating knots for which the algorithm fails to find ribbon disks, though a related search identifies all such examples known. Combining these searches with known obstructions, we resolve the sliceness of all but 3,276 of the over 1.2 billion prime alternating knots with 21 or fewer crossings.","PeriodicalId":50464,"journal":{"name":"Experimental Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10586458.2022.2158968","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5
Abstract
We describe an algorithm to find ribbon disks for alternating knots, and the results of a computer implementation of this algorithm. The algorithm is underlain by a slice link obstruction coming from Donaldson's diagonalisation theorem. It successfully finds ribbon disks for slice two-bridge knots and for the connected sum of any alternating knot with its reverse mirror, as well as for 662,903 prime alternating knots of 21 or fewer crossings. We also identify some examples of ribbon alternating knots for which the algorithm fails to find ribbon disks, though a related search identifies all such examples known. Combining these searches with known obstructions, we resolve the sliceness of all but 3,276 of the over 1.2 billion prime alternating knots with 21 or fewer crossings.
期刊介绍:
Experimental Mathematics publishes original papers featuring formal results inspired by experimentation, conjectures suggested by experiments, and data supporting significant hypotheses.
Experiment has always been, and increasingly is, an important method of mathematical discovery. (Gauss declared that his way of arriving at mathematical truths was "through systematic experimentation.") Yet this tends to be concealed by the tradition of presenting only elegant, fully developed, and rigorous results.
Experimental Mathematics was founded in the belief that theory and experiment feed on each other, and that the mathematical community stands to benefit from a more complete exposure to the experimental process. The early sharing of insights increases the possibility that they will lead to theorems: An interesting conjecture is often formulated by a researcher who lacks the techniques to formalize a proof, while those who have the techniques at their fingertips have been looking elsewhere. Even when the person who had the initial insight goes on to find a proof, a discussion of the heuristic process can be of help, or at least of interest, to other researchers. There is value not only in the discovery itself, but also in the road that leads to it.