Hydrogel-Crosslinked Microneedles Based on Microwave-Assisted Drying Method

IF 2 4区 工程技术 Q3 ENGINEERING, CHEMICAL Advances in Polymer Technology Pub Date : 2022-09-08 DOI:10.1155/2022/2220918
Dongyu Chen, Yu Zhang, Xiaoke Chen, Qiyao He, Tianwei Wu, Xiaoping Cao, Jing Liu, Xueqiu You
{"title":"Hydrogel-Crosslinked Microneedles Based on Microwave-Assisted Drying Method","authors":"Dongyu Chen, Yu Zhang, Xiaoke Chen, Qiyao He, Tianwei Wu, Xiaoping Cao, Jing Liu, Xueqiu You","doi":"10.1155/2022/2220918","DOIUrl":null,"url":null,"abstract":"We present a method and several applications for the synthesis of hydrogel-crosslinked microneedle arrays utilizing microwave-assisted drying, ensuring a significant reduction in reaction preparation time while maintaining quality. We demonstrate the feasibility of drying hydrogels using microwaves and thus extend to crosslinked microneedle fabrication. Crosslinking was performed using 1,4-butanediol diglycidyl ether (BDDE) as a crosslinking agent. Infrared spectra of the microneedle arrays were measured with attenuated total reflection-Fourier transform infrared (ATR-FTIR). The surface morphology of the microneedle arrays was observed with scanning electron microscopy (SEM). The microneedle arrays were evaluated in terms of mechanical strength, swelling kinetics, rheological properties, degradation rate, and glucose iontophoresis. The results show that this method can shorten the reaction preparation time by 5 hours, and the prepared crosslinked microneedle array has better crosslinking efficiency, swelling effect, and greater mechanical strength than traditional methods.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Polymer Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/2220918","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

Abstract

We present a method and several applications for the synthesis of hydrogel-crosslinked microneedle arrays utilizing microwave-assisted drying, ensuring a significant reduction in reaction preparation time while maintaining quality. We demonstrate the feasibility of drying hydrogels using microwaves and thus extend to crosslinked microneedle fabrication. Crosslinking was performed using 1,4-butanediol diglycidyl ether (BDDE) as a crosslinking agent. Infrared spectra of the microneedle arrays were measured with attenuated total reflection-Fourier transform infrared (ATR-FTIR). The surface morphology of the microneedle arrays was observed with scanning electron microscopy (SEM). The microneedle arrays were evaluated in terms of mechanical strength, swelling kinetics, rheological properties, degradation rate, and glucose iontophoresis. The results show that this method can shorten the reaction preparation time by 5 hours, and the prepared crosslinked microneedle array has better crosslinking efficiency, swelling effect, and greater mechanical strength than traditional methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于微波干燥法的水凝胶交联微针
我们提出了一种利用微波辅助干燥合成水凝胶交联微针阵列的方法和几种应用,确保在保持质量的同时显著缩短反应制备时间。我们证明了使用微波干燥水凝胶的可行性,从而扩展到交联微针的制造。使用1,4-丁二醇二缩水甘油醚(BDDE)作为交联剂进行交联。用衰减全反射傅立叶变换红外光谱(ATR-FTIR)测量微针阵列的红外光谱。用扫描电子显微镜(SEM)观察了微针阵列的表面形貌。对微针阵列的机械强度、溶胀动力学、流变特性、降解速率和葡萄糖离子电渗进行了评估。结果表明,该方法可将反应制备时间缩短5小时,制备的交联微针阵列具有比传统方法更好的交联效率、溶胀效果和更大的机械强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Polymer Technology
Advances in Polymer Technology 工程技术-高分子科学
CiteScore
5.50
自引率
0.00%
发文量
70
审稿时长
9 months
期刊介绍: Advances in Polymer Technology publishes articles reporting important developments in polymeric materials, their manufacture and processing, and polymer product design, as well as those considering the economic and environmental impacts of polymer technology. The journal primarily caters to researchers, technologists, engineers, consultants, and production personnel.
期刊最新文献
Analysis and Optimization of Thermoplastic Polyurethane Infill Patterns for Additive Manufacturing in Pipeline Applications Antibacterial Effect of Copper Oxide Nanoparticles on Polyvinyl Chloride-Based Polymer Nanocomposite Synthesis of Hydrogel Based on Poly (Acrylic Acid–Co-Vinyl Acetate) Grafted on Modified Recycled Cellulose for Use in Fertilizer Slow-Release System Rescaffolding Carbon Nanotubes in Thermoset Polymers by Heat Treatments Design and Application of Flexible Sensors in Human–Machine Interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1